
Dynamic Graph Sketching
COMS 4232: Advanced Algorithms Final Project

Ashwin Padaki and Krish Singal

May 17, 2023

Introduction

Linear sketching is a general technique for approximating high-dimensional vectors via linear dimen-
sionality reduction. In the streaming setting, it is used to efficiently solve problems such as norm
estimation and heavy hitters. Dynamic graph sketching, formally introduced in [AGM12], is the
problem of computing properties of multi-graphs given stream access to its nodes and edges. The
results outlined operate largely within the semi-streaming model, wherein Õ(n) bits of memory are
allowed. This survey has three main contributions. (1) We define the problem, detail preliminaries
on ℓp sampling, and outline an algorithm to compute spanning forests in the semi-streaming model.
(2) We outline some of its applications to various other graph problems, such as bipartite testing
and approximate MST computation. (3) Finally, we outline a proof of the optimality of the AGM
sketch.

Contents

1 Preliminaries 2
1.1 Dynamic Streaming Model . 2
1.2 ℓp Sampling . 2
1.3 Linear Sparse Recovery . 2
1.4 Algorithm for ℓ0 sampling . 3
1.5 Proof of Correctness . 4

2 AGM Sketch 5
2.1 Sketch Updates – Independence and Adaptivity . 5
2.2 Algorithm for Spanning Forest . 5
2.3 Applications via Reduction . 6

2.3.1 Bipartiteness . 6
2.3.2 Approximate MST . 7

3 Optimality 8
3.1 Communication Complexity – a quick primer . 8
3.2 Reducing Spanning Forest to n-fold UR⊂ . 9
3.3 θ-Protocols and a Direct Product Lemma . 10
3.4 Existing Lower Bounds for UR⊂ . 11

1

1 Preliminaries

1.1 Dynamic Streaming Model

This survey outlines results within the context of the dynamic graph streaming model, which is
defined below.

Definition 1 (Dynamic Graph Stream). Consider a multi-graphG = (V,E) with |V | = n, |E| =
m. Here, E should be interpreted as a vector whose coordinates indicate the multiplicity of a given
edge in the graph. Accordingly, the basis vector ei is the indicator of a single edge i ∈ [m]. Graph
G may then be represented as a dynamic graph stream S = ⟨s1, ..., st⟩ where si = (ei,∆i) ∈ E × Z
and

∑t
i=1 ei∆i = E.

Note that dynamic graph streams allow an edge e ∈ E to be inserted or deleted multiple times
during the course of stream S, a less restrictive version of the insertion-only model.

1.2 ℓp Sampling

When processing data streams, it is no surprise that information about the p-norm ℓp(x) := ||x||p
turns out to be a useful metric. Rather than the explicit estimation of the p-norm, ℓp sampling
asks a related but nonetheless powerful question: can we efficiently sample from the coordinates of
x according to the distribution induced by ℓp(x)?

Definition 2 (ℓp Sampler). Consider a dynamic stream and the associated aggregate vector
x ∈ Rn. We say that an algorithm is an ℓp sampler with error (ϵ, δ) if it returns ⊥ (failure) with

probability at most δ and otherwise outputs coordinate i of x with probability (1± ϵ) · |xi|p
ℓp(x)p

.

In the above definition, note that there are two sources of error: δ is an upper bound on the proba-
bility of general failure, while ϵ controls the maximum multiplicative error on the true ℓp distribution
in any successful case.

While ℓp sampling is an interesting area of study, for the purposes of graph streaming we care most
about sketches for ℓ0 sampling. ℓ0 sampling simply requires that we return a uniformly random
nonzero coordinate of the stream vector x. This establishes connections with the related problem
of linear sparse recovery.

1.3 Linear Sparse Recovery

Given a sparsity threshold s ≤ n, a linear sparse recovery protocol consists of a dimension parameter
k, a distribution of linear functions L : Rn → Rk, and an algorithm which, on input L(x), has the
following two guarantees:

• If ℓ0(x) ≤ s (i.e. x is “s-sparse”), then the algorithm outputs x with probability 1.

• If ℓ0(x) > s the algorithm outputs ⊥ with probability 9/10.

We denote by SparseRecoverys the procedure with these guarantees and which provides query
access to the output x. Sparse recovery is a fairly well-studied problem and has deep connections
to signal processing and coding theory. We will use the following positive result without proof, but
a more in-depth discussion of linear sparse recovery can be found in Section 2.3 of [CF14].

2

Lemma 1 For x ∈ Rn and 1 ≤ s ≤ n, there exists a linear sparse recovery protocol where k = O(s)
and L can be determined from O(k log n) random bits.

The fact that L is linear is crucial. Particularly in our dynamic stream context, we can maintain
s-sparse recoverable vectors using only O(k) space via the sketch L.

1.4 Algorithm for ℓ0 sampling

Through a clever application of this sparse recovery protocol, [JST11] constructs an efficient stream-
ing algorithm for ℓ0 sampling with error (0, δ). That is, with probability at least 1−δ, the algorithm
is guaranteed to return a uniformly random element of J = {i ∈ [n] : xi ̸= 0}.

A naive approach would be to directly store and sample from J , but of course |J | = O(n) in the
worst case, and we would like a sublinear space algorithm. A key observation is that we can al-
most sample uniformly from J with the following two-step process: pick a uniformly random subset
I ⊆ [n] of some given size, and then sample uniformly from I ∩ J , which can be accomplished with
O(|I ∩ J |) space. The major caveat is that if |I| is too small, we run the risk that I ∩ J = ∅,
in which case our approach would fail. We might therefore intuit that there is some I such that
both our demands are met with high probability: I ∩ J ̸= ∅, and |I ∩ J | is sufficiently small. This
intuition turns out to be correct, and while the optimal |I| cannot be determined a priori, a clever
trick allows us to find an appropriate setting.

We can do even better with sparse recovery: |I ∩ J | being sufficiently small (less than some
threshold s) is equivalent to xI , the projection of x onto coordinates I, being s-sparse. Us-
ing SparseRecoverys and maintaining L(xI), our space is bottlenecked not by |I ∩ J | but by
|L(xI)| = O(s). It turns out that a sufficient threshold is s = O(log

(
1
δ

)
), which notably does not

depend on n at all.

Algorithm 1 ℓ0 Sampler

1: procedure ℓ0 Sampler
2: Set s :=

⌈
4 log

(
1
δ

)⌉
3: Set I0 := [n]
4: for k = 0, . . . , ⌊log n⌋ do
5: if k > 0 then
6: Draw Ik ⊆ [n] uniformly at random with |Ik| = 2k

7: Set xIk ∈ R2k (or Rn if k = 0) as the projection of x onto coordinates Ik
8: Set yk = SparseRecoverys(xIk)
9: if yk = ⊥ or yk = 0 then continue

10: else
11: Set Jk = {i ∈ Ik : (yk)i ̸= 0}
12: Draw j ∈ Jk uniformly at random
13: return j

14: return “FAIL”

3

1.5 Proof of Correctness

We will first show that this ℓ0 sampler has error (0, δ). Observe that whenever we do not return
“FAIL”, we return a random coordinate from some Jk = J ∩ Ik. Since each set Ik is uniformly
random, a random coordinate from Jk is also a random coordinate of J , confirming that ϵ = 0.
Then, it suffices to show that we return “FAIL” with probability at most δ. To prove this, we will
show the existence of some k for which xIk is nonzero and s-sparse (or equivalently 1 ≤ |Jk| ≤ s)
with probability at least 1 − δ; if this holds, then sparse recovery yields yk = xIk /∈ {⊥, 0} with
probability 1, in which case we will return some j and avoid failure.

First, we remark that if |J | ≤ s then xI0 = x is nonzero and s-sparse with probability 1 > 1 − δ.

If |J | > s then for any given k ≥ 1 we have E[|Jk|] = E[|Ik ∩ J |] = 2k·|J |
n , since each coordinate

in |J | has probability 2k

n of also being in Ik. The quantity 2k ranges over all powers of 2 from

2 up to 2⌊logn⌋. Therefore, the smallest setting of 2k·|J |
n is 2|J |

n ≤ 2 while the largest setting is
2⌊logn⌋·|J |

n ≥ n/2·|J |
n > s

2 . Hence, there is some k∗ for which E[|Jk∗ |] = 2k
∗ |J |
n ∈ [s/3, 2s/3]. Since |Jk∗ |

can also be written as a sum of |J | > s i.i.d indicator variables, a simple Chernoff bound allows us

to conclude that this |Jk∗ | ∈ [1, s] except with probability at most e− log(1
δ) = δ.

There is one small technicality we must address before we can conclude that we indeed a uniformly
random element in J . Recall that when x is not s-sparse, with probability 1/10 the algorithm
SparseRecoverys may return not ⊥ but an arbitrary vector, and a random nonzero coordinate
of this vector may not even be an element of J . To fix this, we note that by running the algo-
rithm SparseRecoverys poly(n) times, we can shrink this error probability from 1/10 to, say,
δ
n . Applying a union bound over all calls to the algorithm, we can assume all of our calls to
SparseRecoverys with non s-sparse inputs will return ⊥ with probability 1 − δ. Hence, we will
have an overall success probability of at least (1− δ)2 ≥ (1− 3δ), so setting constants appropriately
completes this part of the proof.

Finally, we compute the space required for our ℓ0 sampler. Observe that during the stream, we
must persistently store the sketches used by our SparseRecoverys instances and the random bits
describing the corresponding linear update functions.

• The SparseRecoverys sketches take O(s) = O(log
(
1
δ

)
) space, and we store ⌊log n⌋ such

sketches.

−→ O(log n · log
(
1
δ

)
) space

• The random bits describing the sketch update functions take O(s log n) = O(log n · log
(
1
δ

)
)

space, and we store 1 + ⌊log n⌋ such functions.

−→ O(log2 n · log
(
1
δ

)
) space

In total, then, our ℓ0 sampler uses O(log2 n · log
(
1
δ

)
) space. Lastly, it turns out that O(log2 n)

random bits are sufficient to sample each Ik ← 2[n] and also each j ← Jk in a way that is “close
enough” to uniformly random. We will not elaborate on this detail, but we refer the reader to
Nisan’s pseudorandom generator for more information.

4

2 AGM Sketch

We now study the AGM sketch, outlined in [AGM12], which employs ℓ0 sampling to construct a
one-pass streaming algorithm to compute spanning forest.

2.1 Sketch Updates – Independence and Adaptivity

Consider the following application of the ℓ0 sampling result from section 1.4 to a graph G = (V,E)

with corresponding adjacency-like matrix AG ∈ {−1, 0, 1}n×(
n
2) defined as

AG[i, (j, k)] =

1 if i = j and (j, k) ∈ E

−1 if i = k and (k, j) ∈ E

0 otherwise

Then define the characteristic vector ai as row i of AG and let S denote the linear ℓ0 sampling
sketch. We see that S(ai) provides a random sample from ai according to the distribution induced
by the ℓ0 norm. In particular, S(ai) is a uniformly random neighbor of i ∈ V (assuming G is undi-
rected) since every neighbor of i contributes a 1 and −1 to characteristic vector ai. The distribution
induced by the ℓ0 norm of ai is then P(j | (i, j) ∈ E) = 2

2·d(i) =
1

d(i) – the uniform distribution over

all neighbors of node i. By virtue of S’s linearity, S(aun) = S(aun−1) + S(en∆n) where aut denotes
node u’s characteristic vector at time t and et∆t is the stream update at time t.

Notice that S is a function of au and the sketch’s internal randomness. In particular, S draws
O(log2(n) log

(
1
δ

)
) random bits to choose the set of Ik’s and an eventual nonzero element from re-

covered x, as described in section 1.4. Then, repeated queries to S(au) must return the same answer.
Put differently, we think of drawing a deterministic linear sketch S uniformly at random from a

total of 2log
2(n) log(1

δ) possible such linear sketches. It is then clear that S(aut1) is not independent of
S(aut2) for any two instances of au during the stream. As will be seen, fresh sketches must be drawn
per query to maintain independence between the randomly sampled neighbors of a given vertex.

Another caveat is the invalidity of adaptive updates to sketch S. One may be tempted to ex-
tract all neighbors of u by iteratively querying S(au) and updating the sketch with the removal of
the retrieved neighbor. This, however, then implies that O(n) bits of information can be retrieved
from a sketch of size O(log2 n log 1

δ). Information theoretically, we know that this can never occur.
Mechanically, such adaptive queries break down the success guarantees given by the ℓ0 sampler, in
turn only allowing log2 n log 1

δ bits of information to be extracted from the sketch on average.

2.2 Algorithm for Spanning Forest

To compute the spanning forest, we first prove the following lemma then present a Boruvska-like
algorithm for the spanning forest computation.

Lemma 2 Let T ⊆ V . We denote ET to be the set of edges crossing the cut T . Then for x =∑
i∈T ai, we have |ET | = ℓ0(x) and S(x) ∼ unif(ET).

5

Proof . Consider three sets of edges A = {(i, j) | i, j ∈ T}, B = {(i, j) | (i ∈ T and j /∈ T)}, and
C = {(i, j) | (i /∈ T and j ∈ T)}. Notice that B ∪ C = ET .

For any (i, j) ∈ A notice that ai[(i, j)] = 1, aj [(i, j)] = −1, and ak[(i, j)] = 0 for k ̸= i, j
and k ∈ T . Therefore, x[(i, j)] = ai[(i, j)] + aj [(i, j)] +

∑
k∈T |k ̸=i,j a

k(i, j) = 1 − 1 + 0 = 0.

Similarly, for (i, j) ∈ B, x[(i, j)] = ai[(i, j)] +
∑

k∈T |k ̸=i a
k[(i, j)] = 1. Lastly, for (i, j) ∈ C,

x[(i, j)] = aj [(i, j)] +
∑

k∈T |k ̸=i a
k[(i, j)] = −1. Therefore, ℓ0(x) = |B|+ |C| = |ET |.

The distribution induced by the ℓ0 norm on x is then given by 1
|ET | for (i, j) ∈ ET – namely,

the uniform distribution over ET .

By the linearity of sketch S, we have that S(au1)+S(au2) = S(au1+au2). Lemma 2 then shows that
S(au1 + au2) samples a neighbor from the neighborhood Nu1 ∪Nu2 uniformly at random (where Nv

denotes the neighbors of v). Naturally, this leads to the following algorithm to compute spanning
forests in the dynamic streaming model.

Algorithm 2 Spanning Forest

1: procedure Spanning Forest
2: Set t = O(log(n))
3: Draw Si1, ...,Sin ℓ0 sampling sketches uniformly at random for i ∈ [t]
4: // Sik is the ith copy of S(ak)
5: Initialize V̂ = V
6: for i ∈ [t] do
7: for s ∈ V̂ do
8: s′ :=

∑
v∈s Siv = Si∑

v∈s a
v

9: Merge s and s′

return V̂

The procedure maintains V̂ which contains one representative for each connected component. s′ is
an ℓ0 sampled neighbor of connected component s. The Merge subroutine combines components s
and s′. Notice that by section 1.4, we can take S to be ℓ0 samplers with ϵ = 0 and constant δ = 1

100 .

Because cc(G)− |V̂ | is reduced by a constant factor with each iteration, only t := O(log(n)) stages
of the algorithm are required. In accordance with the independence and adaptivity issues discussed
in 2.1, note that we must use a fresh sketch for each node per timestep. Then, Spanning-Forest
is an O(nt log2(n)) = O(n log3(n)) space algorithm.

2.3 Applications via Reduction

We now present two applications of the AGM sketch as proven in [AGM12].

2.3.1 Bipartiteness

We present a solution to bipartite testing within the semi-streaming model via a reduction to
the spanning forest problem. In particular, given a graph G = (V,E) we construct the graph

6

D(G) = (V ′, E′) where V ′ = {v1 | v ∈ V }∪{v2 | v ∈ V } and E′ = {(u1, v2) | (u, v) ∈ E}∪{(u2, v1) |
(u, v) ∈ E}. Then,

Lemma 3 Let cc(G) denote the number of connected components in graph G. Then, cc(D(G)) =
2cc(G) iff G is bipartite.

Proof . Let k = cc(G) and G1, ..., Gk be the connected components of G. By definition, Gi and Gj

for i, j ∈ [k] are disconnected, meaning that D(G) contains isolated components (not necessarily
connected) D(G1), ..., D(Gk). Thus, cc(D(G)) =

∑k
i=1 cc(D(Gi)).

We first show that for any bipartite component Gi, D(Gi) contains exactly 2 connected compo-
nents. By virtue of Gi being connected, there exists a path from vertex u ∈ Vi to any v ∈ Vi. This
means that u1 can reach either v1 or v2 for every v ∈ Vi. In particular, if u1 can reach vj then u2
can reach v3−j for j ∈ {1, 2}.

Let us then denote the nodes reachable by u1 and u2 as S1 and S2 respectively. From the above
argument, we conclude that S1 ∪ S2 = V ′. We claim that S1 and S2 are separate connected com-
ponents of Gi. To see that they cannot be merged, note that any path from u1 to u2 must have
odd length (as discussed above). This, however, corresponds to an odd cycle in Gi – contradiction.
Therefore, D(Gi) contains exactly 2 connected components. By the same line of reasoning, for Gi

that is not bipartite, there must exist an odd cycle. Let u be a vertex in this odd cycle. It follows
that S1 and S2 are connected since a path between u1 and u2 exists in D(Gi). Therefore, D(Gi)
contains exactly one connected component.

To finish the argument, notice that for bipartite graph G, every Gi must be bipartite. Then,∑k
i=1 cc(D(Gi)) = 2k. For a graph G that is not bipartite, there must exist a Gi which is not

bipartite. Then,
∑k

i=1 cc(D(Gi)) < 2k.

We then maintain sketches of the characteristic vectors from adjacency matrix AD(G) and compute

D(G)’s spanning forest using the AGM sketch in section 2.1 to obtain an O(n log3 n) space algorithm
for dynamic bipartite testing.

2.3.2 Approximate MST

We can also compute (1+ ϵ) approximate MST via a reduction to the spanning forest problem. Let
G = (V,E) be a weighted graph with weights in the range [1,W] where W = poly(n). Denote Gi

to be the edge-induced subgraph given by edges with weight at least (1 + ϵ)i.

Lemma 4 Let λi = (1 + ϵ)i+1 − (1 + ϵ)i and r =
⌈
log1+ϵ(W)

⌉
. Then,

w(T) ≤ n− (1 + ϵ)r +

r∑
i=0

λi · cc(Gi) ≤ (1 + ϵ)w(T)

Proof . Construct weighted graph G′ by rounding every edge weight up to the nearest power of
(1+ ϵ). Every edge weight is scaled by at least a factor of 1 and at most a factor of (1+ ϵ), therefore

w(T) ≤ w(T ′) ≤ (1 + ϵ)w(T)

7

where T ′ is an MST for G′. Consider the construction of T ′ via Kruskal’s algorithm. Notice that
Kruskal’s algorithm will greedily pick n − cc(G1) weight 1 edges (any more will result in a cycle).
At this point, there will be cc(G1) connected components. Kruskal’s will then pick cc(G1)− cc(G2)
weight (1 + ϵ) edges. In general, on iteration i, Kruskal’s picks cc(Gi) − cc(Gi+1) weight (1 + ϵ)i

edges. Therefore, the total weight of T ′ is given by

w(T ′) = (n− cc(G1)) +

r−1∑
i=1

(1 + ϵ)i(cc(Gi)− cc(Gi+1))

= n− (1 + ϵ)r +

r∑
i=0

λicc(Gi) ≤ (1 + ϵ)w(T)

To compute a (1 + ϵ)-approximation of w(T), we must only compute all cc(Gi). Observe that Gi is
a subgraph of Gi+1. Because the edge weights in Gi are smaller than those of Gi+1, it follows that
Ti is a subgraph of Ti+1 (where Ti denotes the MST of Gi). In particular, the spanning forest of Gi

is a subgraph of the spanning forest of Gi+1. We can then compute cc(G1), ..., cc(Gr) with a total

of log(n) merge iterations. Notice that r = log(poly(n))
1+ϵ = O(log(n)ϵ).

Just as in the AGM sketch, we must store sketches for eachGi – takingO(nr log2(n)) = O(ϵ−1n log3(n))
space in total. The global O(log(n)) merge steps require O(n log2(n) · log(n)) = O(n log3(n)) space.
Thus, for bounded ϵ, there exists a one-pass algorithm for approximate MST using O(ϵ−1n log3(n))
space.

3 Optimality

In Section 2, we used the AGM sketch to provide an efficient sketch for the spanning forest algorithm.
This motivates the question: can we do even better? In this section, we overview a proof found
in [NY19] of a matching space lower bound; that is, the AGM sketch is actually space-optimal for
computing spanning forest! We begin with a short review of communication complexity, a tool we
will need to prove this lower bound.

3.1 Communication Complexity – a quick primer

Traditional computational complexity evaluates the complexity of certain problems by the amount
of computation needed to evaluate the output for a given input. Communication complexity asks a
different question: for a given relation f(x, y) whose inputs known by two different parties – Alice
only knows x and Bob only knows y – how many bits of communication between the parties are
necessary for one party to correctly output an element in f(x, y), assuming each party can do unlim-
ited computation on their own? A natural extension is the n-fold problem, fn(x1, y1, ..., xn, yn), in
which Alice and Bob must compute n independent instances of f(xi, yi). Randomized communica-
tion complexity (in the public coin model) allows Alice and Bob to agree on a random communication
protocol, with the goal of outputting a correct f(x, y) except with some small failure probability δ.

8

In the context of streaming problems, we often consider the one-way communication setting, wherein
Alice is allowed to send only a single message m to Bob, after which Bob must output a value. The
reason for this is that efficient streaming algorithms for a given problem P give rise to efficient
one-way communication protocols for certain relations f(x, y) that are determined by P :

1. Alice initializes a program implementing the streaming algorithm for P , and issues a certain
sequence of updates to her sketch determined by her input x.

2. Alice sends a message m containing the memory of the sketch to Bob.

3. Bob issues a certain sequence of updates determined by his input y. Bob then evaluates P ,
after which he can output a candidate solution to f(x, y).

We observe that the communication cost of the above protocol (the length of m) is precisely the size
of the sketch for solving P . Therefore, known lower bounds for certain communication problems
translate directly to lower bounds for the corresponding streaming problem! While the condition
that P fully determines f might seem overly restrictive at first, it holds in various settings. This is
best shown through an example that is particularly relevant for our purposes, namely the commu-
nication problem of one-way universal relation.

Definition 3 We define the one-way universal relation problem UR⊂ as follows. Fixing a universal
set U , Alice receives a set S ⊂ U and Bob receives a set T ⊂ U , with the promise that T ⊊ S. Upon
receiving a message m from Alice, Bob must output some i ∈ S\T . As before, we can extend the
universal relation problem to the n-fold setting, in which Bob must return i1, . . . , in with ij ∈ Sj\Tj .

3.2 Reducing Spanning Forest to n-fold UR⊂

We illustrate a reduction from the spanning forest problem discussed in Section 2 to the n-fold
version of UR⊂ in the proof of the following lemma.

Lemma 5 Suppose there is a dynamic graph streaming algorithm A on a 2n-node graph that out-
puts a correct spanning forest (with failure probability δ) using C bits of memory. Then, there
is a randomized one-way communication protocol for n-fold UR⊂ with U = [n] using C bits of
communication with success probability 1− δ.

Proof . Consider a graphG on 2n nodes, whose vertices are indexed v1, . . . , vn, w1, . . . , wn. Consider
the following communication protocol for n-fold UR⊂:

1. Alice simulates A on an initially empty G. For each i ∈ [n], and for each x ∈ Si, she feeds to
A the insertion update (vx, wi) to G.

2. Alice sends the memory of A to Bob.

3. For each i ∈ [n], and for each x ∈ Ti, Bob feeds to A the deletion update (vx, wi). Bob then
obtains a spanning forest from G. This will allow Bob to obtain an edge (vx, wj) for each
j ∈ [n] and he sets ij := x with the guarantee that x ∈ Sj\Tj .

9

To verify the correctness of the above protocol, observe that after Alice’s insertions and Bob’s
deletions, the edges (vx, wi) remaining in G correspond to all x, i ∈ [n] for which x ∈ Si\Ti. By
the promise of UR⊂, each wj will have at least one incident edge, meaning a spanning forest must
contain at least one incident edge of wj , which allows Bob to return some ij ∈ Sj\Tj , as desired.
Clearly, the above protocol takes at most C bits of communication, and its failure probability is at
most the failure probability of A, namely δ.

Using this lemma, finding a lower bound for the amount of bits necessary to solve the spanning forest
problem on dynamic graph streams reduces to finding a lower bound for the amount of communica-
tion needed to solve the n-fold UR⊂ problem in the randomized one-way setting. As it turns out,
a well-known result known as Yao’s principle equates randomized communication complexity with
distributional communication complexity. That is, if we show the existence of a distribution D over
the input space for which any deterministic protocol must use C bits of communication, we guar-
antee that any randomized protocol must use at least C bits of communication. It turns out that
in order to find the desired distributional lower bound, we must first introduce some information
theoretic notions, which we will do in the following subsection.

3.3 θ-Protocols and a Direct Product Lemma

Given a function f and corresponding protocol π with communication cost C, we can trivially upper
bound the communication cost of the n-fold problem fn by Cn. Similarly, a randomized protocol
with cost C and success probability p trivially yields an n-fold protocol with cost Cn and success
probability pn. But are these optimal in general? Conversely, given an n-fold protocol, what is
the optimal one-fold protocol? Here we define preliminaries in information theory, the notion of
θ-protocols, and outline a surprising result addressing these questions.

Definition 4 Let X be a random variable. The entropy of X is then H(X) =
∑

x−p(x) log(p(x)).

The entropy of a random variable intuitively quantifies how random it is. The reader is encouraged
to verify that a random variable taking on the uniform distribution has maximal entropy, whereas
that taking on a Dirac delta distribution has minimal entropy.

Definition 5 The mutual information between random variables X and Y is given by I(X;Y) =
H(X)−H(X | Y). Similarly, the conditional mutual information I(X;Y | Z) = H(X | Y)−H(X |
Y,Z)

The mutual information between X and Y intuitively quantifies the amount of information random
variable Y contains about X.

Definition 6 Let D be an input distribution for communication problem f(x, y). Then, a one-way
θ-protocol is defined to contain

1. Mx,y, a distribution over all messages Alice can send to Bob.

2. O(m, y), an output function dependent only on m and y

such that when (X,Y) ∼ D and M ∼Mx,y then I(M ;Y |X) ≤ θ

10

Notice that the one-way θ-protocol only differs from the standard one-way protocol by allowing
Alice’s message M to depend on Bob’s input y. In particular, Y can reveal at most θ more bits of
information regarding M given X. It is then obvious that a 0-protocol is equivalent to the standard
one way protocol since I(M ;Y | X) = 0 ⇐⇒ M depends only on x.

As it turns out, n-fold protocols yield efficient θ protocols. This is proven by the following variant
of the direct product lemma:

Lemma 6 Let Dn be a distribution over inputs (X(n), Y (n)) = (X1, ..., Xn, Y 1, ..., Y n) to an n-
fold problem fn. If there is a one-way protocol τ for fn with communication cost C and success
probability p, then there is an input distribution D′ and O(1n log 1

p)-protocol π for the one fold problem
f such that

1. π has success probability 1−O

(√
1
n log

(
1
p

))
2. π has internal information cost I(X;M | Y) ≤ O(C/n)

3. D′ and D are “close” in distribution

Here, the notion of “closeness” between D and D′ is quantified by the KL-divergence and is outside
the scope of this survey. While the proof of Lemma 6 is beyond the reach of this survey, we
offer very brief intuition as to why one might expect such a statement to be true. Naturally,
we can decompose any n-fold problem into n one-fold problems. By an averaging argument, at
least one of these problems must have communication cost (or in this case, the analogous internal
information cost) smaller than C/n. We encourage the motivated reader to consult [NY19] for
detailed argumentation.

3.4 Existing Lower Bounds for UR⊂

The reason we construct a one-way θ-protocol from an n-fold protocol is to utilize known lower
bounds on θ-protocols – thereby providing a lower bound on the communication cost of the n-fold
problem. In particular, the universal relation problem has the following known lower bound:

Lemma 7 There exists a distribution DUR such that for any distribution D′ “close” in distribution,
one-way η-protocols for UR⊂ over D′ with error probability δ must have internal information cost
I(X;M |Y) ≥ Ω(log

(
1
δ

)
log2 n) for η ≤ O(δ2).

Notice that by Lemma 7, an n-fold protocol πn with cost C and error probability δ yields a distribu-
tion D′ and one-way O(δn)-protocol with internal information cost I(X;M |Y) ≤ O(C/n). Naturally,
an application of Lemma 8 then gives C/n ≥ Ω(log

(
n
δ

)
log2 n) implying that C ≥ Ω(n log2 n log

(
n
δ

)
).

Lemma 6 then implies that any dynamic graph streaming algorithm for spanning forest with error
probability δ must use Ω(n log2 n log

(
n
δ

)
) bits of memory. When δ is a constant, the AGM sketch

achieves the Ω(n log3 n) lower bound.

11

References

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via lin-
ear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 459–467, 2012.

[CF14] Graham Cormode and Donatella Firmani. 2014. A unifying framework for l0-sampling
algorithms. Distributed Parallel Databases 32, 3 (2014), 315–335

[JST11] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds for lp samplers, finding duplicates
in streams, and related problems. In PODS, pages 49–58, 2011.

[NY19] Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming
spanning forest computation. In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 1844–1860, 2019.

12

	Preliminaries
	Dynamic Streaming Model
	p Sampling
	Linear Sparse Recovery
	Algorithm for 0 sampling
	Proof of Correctness

	AGM Sketch
	Sketch Updates – Independence and Adaptivity
	Algorithm for Spanning Forest
	Applications via Reduction
	Bipartiteness
	Approximate MST

	Optimality
	Communication Complexity – a quick primer
	Reducing Spanning Forest to n-fold UR
	-Protocols and a Direct Product Lemma
	Existing Lower Bounds for UR

