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Preface

These solutions are the culmination of our collective reading of Ryan O’Donnell’s Analysis of Boolean
Functions over the Spring 2023 semester. The hope is for this to be used as a reference for students
learning the topic for the first time just like us.
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1 Boolean Functions and the Fourier Expansion

Problem 1.2 Recall that the set of boolean functions {f |f : {−1, 1}n → {−1, 1}} is a vector
space of dimension 2n with parity functions χS (for S ⊆ [n]) being the basis vectors. Let f̂(S) be
the only non-zero Fourier coefficient. Since the range of f is {−1, 1}, f̂(S) must be either −1 or 1.
By symmetry then, there are 2n ·2 = 2n+1 functions with exactly one non-zero Fourier coefficient.

Problem 1.3 Let A = f−1({1}) ⊂ {−1, 1}n. We are given that |A| is odd and n ≥ 2. Let
S ⊆ [n]. Then, we have f̂(S) = Ex[f(x) · χS(x)] = 2 · Prx[f(x) = χS(x)] − 1. To show that
f̂(S) ̸= 0, then, it suffices to show that Prx[f(x) = χS(x)] ̸= 1

2 . Let B = χ−1
S ({1}). Observe that

|B| =

{
2n−1 if S ̸= ∅
2n if S = ∅

. Since n ≥ 2, |B| is even in either case.
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Then, we have:

Pr
x
[f(x) = χS(x)] = Pr

x
[f(x) = χS(x) = 1] + Pr

x
[f(x) = χS(x) = −1]

=
|A ∩B|

2n
+

|Ac ∩Bc|
2n

=
|A ∩B|

2n
+

2n − |A ∪B|
2n

=
|A ∩B|

2n
+

2n − |A| − |B|+ |A ∩B|
2n

=
2|A ∩B|+ 2n − (|A|+ |B|)

2n
.

Note that the numerator is odd because |A| + |B| is odd. In particular, the numerator cannot be
2n−1, so Prx[f(x) = χS(x)] ̸= 1

2 , which means f̂(S) ̸= 0 as desired.

Problem 1.4

Ey[f(y)] = Ey[
∑
S⊆[n]

f̂(S)yS ] =
∑
S⊆[n]

f̂(S) · Ey[y
S ] (Linearity of Expectation)

=
∑
S⊆[n]

f̂(S) · Ey[Πi∈Syi] =
∑
S⊆[n]

f̂(S) ·Πi∈SEy[yi] (Independence)

=
∑
S⊆[n]

f̂(S) ·Πi∈Sµi = F (µ)

Problem 1.5

(i) Suppose for the sake of contradiction that |f̂(S)|, |f̂(T )| > 1
2 for S ̸= T . Then 1 − 2 ·

dist(f, χS) >
1
2 and 1−2·dist(f, χT ) >

1
2 by definition, which yields dist(f, χS), dist(f, χT ) <

1
4 .

But then:

dist(χS , χT ) ≤ dist(f, χS) + dist(f, χT )

<
1

4
+

1

4

=
1

2
.

This is a contradiction, since dist(χS , χT ) = 1
2 (as ⟨χS , χT ⟩ = 0). Hence, no such S, T can

exist, as desired.

(ii) Consider f : {−1, 1}n → R given by f(x) = 3
5Π

n
i=1xi +

4
5

2



Problem 1.7 Fix S ⊆ [n]. Then we have:

Ef [f̂(S)] = 2−n
∑
f

f̂(S)

= 2−n
∑
f

⟨f, χS⟩

= 2−n⟨
∑
f

f, χS⟩ (bilinearity)

= 2−n⟨0, χS⟩ (can partition function space into (f,−f) pairs)
= 0.

To clarify the above logic, letA be the set of functions f : {−1, 1}n → {−1, 1} for which f(1, 1, . . . , 1) =
1 and B be the set where f(1, 1, . . . , 1) = −1. A and B partition the function space and have the
property that f ∈ A ⇐⇒ −f ∈ B. Therefore

∑
f f =

∑
A f +

∑
B f = 0.

We now compute the variance:

Varf [f̂(S)] = Ef [f̂(S)
2]− Ef [f̂(S)]

2

= Ef [f̂(S)
2]

= Ef [⟨f, χS⟩2]
= Ef [⟨f · χS , χS⟩2] (permutation of function space)

= Ef [Ex[f(x) · χS(x)
2]

= Ef [⟨f, 1⟩2] (χ2
S = 1)

= Ef [f̂(∅)].

To clarify the above logic, observe that χS is fixed and {f} = {f · χS}, so replacing f with
χS does not change the expectation. But note that there is no dependence on S. Therefore
Ef [f̂(S)

2] = Ef [f̂(∅)2] for all S. Finally, by Parseval’s, we have:

1 = Ef

[∑
T

f̂(T )2

]
=
∑
T

Ef

[
f̂(T )2

]
=
∑
T

Ef [f̂(∅)2]

= 2n · Ef [f̂(∅)2].

We conclude that Ef [f̂(S)
2] = Ef [f̂(∅)] = 2−n, as desired.

Problem 1.8

(a)

f̂ †(S) = ⟨f †(x), χS(x)⟩ = ⟨−f(−x), χS(x)⟩ = − 1

2n

∑
x∈{−1,1}n

f(−x)χS(x)
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Note that

χS(x) =

{
−χS(−x) if |S| mod 2 = 1

χS(−x) if |S| mod 2 = 0

Then,

f̂ †(S) =

{
1
2n
∑

x∈{−1,1}n f(−x)χS(−x) if |S| mod 2 = 1

− 1
2n
∑

x∈{−1,1}n f(−x)χS(−x) if |S| mod 2 = 0
=

{
f̂(S) if |S| mod 2 = 1

−f̂(S) if |S| mod 2 = 0

(b) fodd(x) + f even(x) = f(x)−f(−x)
2 + f(x)+f(−x)

2 = f(x). If f is odd, then f(−x) = −f(x) and

fodd(x) = f(x)+f(x)
2 = f(x). Similarly, if f(x) = fodd(x) then f(x) = −f(−x) which means f

is odd. A correspondingly similar argument can be used to show the case for even f .

(c) Note that

f = fodd + f even

f † = fodd − f even

Thus,

f + f † = 2fodd =
∑
S⊆[n]

f̂(S)χS +
∑
S⊆[n]
|S| odd

f̂(S)χS −
∑
S⊆[n]

|S| even

f̂(S)χS = 2
∑
S⊆[n]
|S| odd

f̂(S)χS

Which means fodd =
∑

S⊆[n]
|S| odd

f̂(S)χS . Then,

f even = f − fodd =
∑
S⊆[n]

f̂(S)χS −
∑
S⊆[n]
|S| odd

f̂(S)χS =
∑
S⊆[n]

|S| even

f̂(S)χS

Problem 1.9

(a) We will use the notation {0, 1} rather than {F,T}. Let f : {0, 1}n → {0, 1} be arbitrary. For

each a ∈ {0, 1}n, let 1a(x) =
∏n

i=1(1−ai−xi+2aixi). By construction, 1a(x) =

{
1 if a = x

0 if a ̸= x
.

Moreover, 1a(x) is multilinear. Therefore, f(x) =
∑

a∈{0,1}n f(a) · 1a(x) is a multilinear
representation for f .

(b) It is enough to show that the zero function has no nonzero multilinear representation q(x) =∑
S⊆[n] cSx

S (if some function f had distinct representations p, p′ then consider q = p − p′).
Suppose for contradiction such a q exists. Let T ⊆ [n] be minimal with cT ̸= 0, so that S ⊊ T

does not hold for any S where cS ̸= 0. Let a ∈ {0, 1}n be given by ai =

{
1 if i ∈ T

0 if i /∈ T
. Then:

q(a) =
∑
S⊆[n]

cSx
S =

∑
S⊆T

cSx
S = cS ̸= 0.
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This is a contradiction, meaning no such q exists, which proves uniqueness of multilinear
representation.

(c) Let {cS} be the coefficients for the multilinear representation of f : {0, 1}n → {0, 1} .Let
T ⊆ [n] be arbitrary. We aim to show that cT ∈ [−2n, 2n] ∩ Z. We make the following claim:∑

S⊆T

(−1)|S|
∑
R⊆S

cR = (−1)|T |cT

To show this, take any R ⊊ T and consider the coefficient of cR in the sum:∑
S : R⊆S⊆T

(−1)|S| = (1− 1)|T |−|R| = 0.

Meanwhile, cT only shows up once in the sum with coefficient (−1)|T |cT . This proves our claim.

Now, observe that for a set S ⊆ [n], we have
∑

R⊆S cR = f(aS) where (aS)i :=

{
1 if i ∈ S

0 if i /∈ S
.

Therefore, we have:

|cT | =

∣∣∣∣∣∣
∑
S⊆T

(−1)|S| · f(aS)

∣∣∣∣∣∣ .
Finally, recall that f(aS) ∈ {0, 1}, which means that cT ∈ Z, and which also gives the following
bounds:

|cT | ≤ max


∑
S⊆T

|S| even

1,
∑
S⊆T

|S| odd

1

 =

{
2|T |−1 if T ̸= ∅
1 if T = ∅

.

To clarify, we could make cT as positive as possible by setting f(aS) = 1 for all even |S|, and
f(aS) = 0 for all odd |S|. Or we could make cT as negative as possible with the opposite

setting. Both cases give us the sum of every other binomial coefficient
(|T |

k

)
, which is 2|T |−1 ≤

2n−1 when T ̸= ∅. Therefore, we have actually shown a slightly stronger statement, that
cT ∈ [−2n−1, 2n−1] ∩ Z whenever n ≥ 1 (and c∅ ∈ {0, 1} always).

(d) Take f : {0, 1}n → {0, 1} with Fourier expansion p and {0, 1}-Fourier expansion q. If x ∈
{0, 1}n then we have 1

2 − 1
2p(1 − 2x1, . . . , 1 − 2xn) =

1
2 − 1

2 · (−1)f(x) = f(x). By uniqueness
of multilinear representation, it follows that q(x) = 1

2 − 1
2p(1− 2x1, . . . , 1− 2xn) as desired.

Problem 1.10

(a) Suppose a, b ∈ R with b ̸= 0 and a+bf ̸= 0. Write f(x) =
∑

S⊆[n] f̂(S)x
S so that (a+bf)(x) =

a +
∑

S⊆[n] bf̂(S)x
S . If S ̸= ∅ then clearly ̂(a+ bf)(S) = bf̂(S) = 0 ⇐⇒ f̂(s) = 0 since

b ̸= 0. Likewise, ̂(a+ bf)(∅) = a + bf̂(∅) = 0 only if deg f ̸= 0, by our assumption that
a + bf ̸= 0. And so either deg f = 0 in which case deg(a + bf) = deg f = 0 as well, or
deg f ̸= 0 in which case deg(a+ bf) = deg f , which is what we wanted to show.
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(b) (⇒) Suppose deg f ≤ k. By definition, we can write:

f(x) =
∑
S⊆[n]
|S|≤k

f̂(S)xS .

If we take gS := xS then each gS depends on at most k input coordinates, meaning f is of the
desired form.

(⇐) Suppose f = α1g1 + · · · + αmgm where αi ∈ R and gi depend on at most k input
coordinates. For a given gi, let xi1 , . . . , xik be the input coordinates gi depends on. Then for
a ∈ {−1, 1}k we can write the following indicators

1a(xi1 , . . . , xik) =
k∏

j=1

1 + ajxij
2

=

{
1 if aj = xij∀j
0 otherwise

we can write gi(x) =
∑

a∈{−1,1}k 1a(xi1 , . . . , xik). But deg(gi) ≤ k so by applying part (a)
finitely many times we conclude deg(f) = deg(α1g1 + · · ·+ αmgm) ≤ k.

(c) Omitting this part because it is tedious and uninteresting.

Problem 1.12

(a) We can show this by induction. For n = 1 we have H21 [γ, x] =

{
−1 if γ = x = 1

1 otherwise
= (−1)γ·x.

Now, supposing H2n [γ, x] = (−1)γ·x for a specific n ∈ N, we aim to show the same for
n+ 1. If γ, x ∈ Fn+1

2 observe that we can write γ = γ′||a and x = x′||b (concatenation) where
γ′, x′ ∈ Fn

2 and a, b ∈ F2. Since a, b are the most significant bits of γ and x, respectively, we can

say H2n+1 [γ, x] =

{
−H2n [γ

′, x′] if a = b = 1

H2n [γ
′, x′] otherwise

. But this is simply equal to H[γ′, x′] · (−1)a·b

which by the inductive hypothesis is (−1)γ
′·x′ · (−1)a·b = (−1)γ

′·x′+a·b = (−1)γ·x, as desired.

(b) Let f : F2 → R. Let i ∈ Fn
2 be associated with Si ⊂ {0, . . . , n − 1} according to the indexing

scheme mentioned in the question. Then we have:

H2nf [i] = H2n [i] · f

=
2n−1∑
x=0

(−1)i·x · f(x).
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On the other hand, we have:

2nf̂(Si) = 2nEx[f(x) · χSi(x)]

=
2n−1∑
x=0

f(x) · (−1)
∑

j∈Si
xj

=

2n−1∑
x=0

f(x) ·
n∏

ℓ=1

(−1) · 1[xℓ = −1] · 1[ℓ ∈ Si]

=
2n−1∑
x=0

f(x) · (−1)i·x.

Hence 2−nH2nf = f̂ .

(c) Let f ∈ R2n . We can express f = f1||f2 where f1, f2 ∈ R2n−1
. Then, consider the following

algorithm ALG(n, f) for computing H2nf :

• If n = 0: return f .

• If n ≥ 1: return

[
ALG(n− 1, f1 + f2)
ALG(n− 1, f1 − f2)

]
.

This algorithm is correct because for n ≥ 1 we have:

H2nf =

[
H2n−1 H2n−1

H2n−1 −H2n−1

] [
f1
f2

]
=

[
H2n−1(f1 + f2)
H2n−1(f1 − f2)

]
.

We now evaluate its complexity. Its recursion tree has depth n, and the recursive step at
depth k takes 2 · 2n−k−1 = 2n−k additions/subtractions (where 0 ≤ k ≤ n − 1), because one

needs to compute f1 + f2, f1 − f2 ∈ R2n−k−1
. No computation needs to be done at the depth

n level. Hence, the total complexity is given by:

n−1∑
k=0

2n−k · 2k =
n−1∑
k=0

2n

= n2n.

Hence, we have found an algorithm for computingH2nf using only n2n additions/subtractions,
as desired.

(d) Since H2n is orthogonal and each row vector has magnitude
√
2n, we have H2

2n = 2n · I2n .
Using part (b), we have

̂̂
f = 2−nH2n f̂ = 2−2nH2

2nf = 2−nf , as desired.
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Problem 1.13 Consider the convex function φ(t) = t
q
p where q > p. By Jensen’s inequality

Ex[φ(f(x)
p)] ≥ φ(Ex[f(x)

p])

Ex[f(x)
q] ≥ Ex[f(x)

p]q/p

Ex[f(x)
q]1/q ≥ Ex[f(x)

p]1/p

∥f∥q ≥ ∥f∥p

To show the inequality holds for q = ∞ where ||f ||∞ := maxx∈{−1,1}n{|f(x)|}, it suffices to show that
for every f , limq→∞ ||f ||q = ||f ||∞. Suppose M = ||f ||∞ so that |f(x)| ≤ M for all x ∈ {−1, 1}n.
Then, we have:

lim
q→∞

||f ||q = lim
q→∞

Ex [|f(x)|q]1/q

≤ lim
q→∞

Ex [M
q]1/q

=M.

And:

lim
q→∞

||f ||q = lim
q→∞

Ex [|f(x)|q]1/q

= lim
q→∞

(
∑

x |f(x)|q)
1/q

2n/q

≥ lim
q→∞

M

2n/q

=M (limq→∞ 2n/q = 1)

We conclude that limq→∞ ||f ||q = ||f ||∞ in general, so we are done.

Problem 1.15 We denote k = |K|. Then,

E[g(x)] =
1

2n−k

∑
x∈{0,1}n−k

g(x) =
1

2n−k

∑
x∈{0,1}n−k

∑
S⊆[n]

f̂(S)χS(xz)

where xz denotes the complete n bit string including the fixed z bits. We split this sum into two
parts

=
1

2n−k

∑
x∈{0,1}n−k

∑
T⊆K

f̂(T )zT +
1

2n−k

∑
x∈{0,1}n−k

∑
S ̸⊆K

f̂(S)χS(xz)

Notice that
∑

T⊆K f̂(T )zT is a constant for every x since z is fixed and f̂(T ) is determined by f .
Thus,

=
∑
T⊆K

f̂(T )zT +
1

2n−k

∑
S ̸⊆K

∑
x∈{0,1}n−k

f̂(S)χS(xz)
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where we have also switched the order of summation in the second term. For any S ̸⊆ K, χS(xz)
is a function of m = |S| − |S ∩K| ≥ 1 unfixed bits. Note then that the number of x ∈ {0, 1}n−k

such that χS(xz) has odd parity is exactly equal to those such that χS(xz) has even parity. This is

because there are 2n−k+m
∑⌊m−1

2
⌋

i=0

(
m
2i

)
many x that result in one parity and 2n−k+m

∑⌊m−1
2

⌋
i=0

(
m

2i+1

)
many that result in the other. Since the sum of the even binomial coefficients is equal to that of
the odd, the claim follows.

Then, for each S ̸⊆ K,
∑

x∈{0,1}n−k f̂(S)χS(xz) = 0. Therefore,

E[g(x)] =
∑
T⊆K

f̂(T )zT

Problem 1.16 By definition dist(f, 1) = P[f(x) ̸= 1] = P[f(x) = −1] and dist(f,−1) = P[f(x) ̸=
−1] = P[f(x) = 1]. For f : {−1, 1}n → {−1, 1}

Var(f) = 1− E[f2] = 1− (P[f(x) = 1]− P[f(x) = −1])2

= 1− P[f(x) = 1]2 − P[f(x) = −1]2 + 2P[f(x) = 1]P[f(x) = −1]

= (1 + P[f(x) = 1])P[f(x) = −1]− P[f(x) = −1]2 + 2P[f(x) = 1]P[f(x) = −1]

= P[f(x) = −1](1 + P[f(x) = 1]− P[f(x) = −1]) + 2P[f(x) = 1]P[f(x) = −1]

= 4P[f(x) = 1]P[f(x) = −1] = 4 dist(f,−1)dist(f, 1)

Notice that dist(f, 1), dist(f,−1) ≤ 1. Then,

Var[f ] = 4 ·min(dist(f, 1), dist(f,−1)) ·max(dist(f, 1),dist(f,−1))

= 4ϵ ·max(dist(f, 1), dist(f,−1)) ≤ 4ϵ

Secondly, because dist(f, 1)+dist(f,−1) = 1, it follows that max(dist(f, 1),dist(f,−1)) ≥ 1
2 . Thus,

Var[f ] = 4 ·min(dist(f, 1), dist(f,−1)) ·max(dist(f, 1), dist(f,−1))

≥ 2 ·min(dist(f, 1), dist(f,−1)) = 2ϵ

Therefore 2ϵ ≤ Var[f ] ≤ 4ϵ.
Problem 1.17 We denote p = P[f(x) = 1] and q = P[f(x) = −1]. Then,

(1) Var[F ] = E[(F − µ)2] = E[F 2]− µ2 (Definition)

(2) E[(F − F ′)2] = E[F 2]− 2E[F ′F ] + E[F ′2] (Linearity of Expectation)

= 2E[F 2]− 2µ2 (Independence)

= 2E[(F − µ)2]
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(3) E[(F − F ′)2] = 0 · (p2 + q2) + 4 · (2pq) = 8pq

P[F ̸= F ′] = 2pq

Therefore,

1

2
E[(F − F ′)2] = 2P[F ̸= F ′]

(4) E[|F − µ|] = |1− µ|p+ |µ+ 1|q
= (1− µ)p+ (µ+ 1)q (−1 ≤ µ ≤ 1 =⇒ |1− µ|, |1 + µ| ≥ 0)

= (1− p+ q)p+ (p− q + 1)q (µ = p− q)

= p− p2 + pq + pq − q2 + q

= 1− (p2 + q2) + 2pq (p+ q = 1)

= 4pq ((p+ q)2 = 1)

Thus,

E[|F − µ|] = 2P[F ̸= F ′]

Problem 1.18 We perform a simple computation:

⟨f=k, f=ℓ⟩ = ⟨
∑

S : |S|=k

f̂(S)χS ,
∑

T : |T |=ℓ

f̂(T )χT ⟩

=
∑

S : |S|=k

∑
T : |T |=ℓ

f̂(S)f̂(T )⟨χS , χT ⟩ (bilinearity)

=

{∑
S : |S|=k f̂(S)

2 if k = ℓ

0 if k ̸= ℓ

=

{
Wk[f ] if k = ℓ

0 if k ̸= ℓ
.

This is what we wanted to show.

Problem 1.19

(a) Suppose, for the sake of contradiction, that there exists an f : {−1, 1}n → {−1, 1} such that
W1[f ] = 1 but is not of the form f = ±χS . This implies that f̂(Si1), ..., f̂(Sik) ̸= 0 for some
1 < k ≤ n, where 1 ≤ ij ≤ n and |Sij | = 1. Then, without loss of generality

f(1) = f̂(Si1) + ...+ f̂(Sik) = 1

Now denote 1p = (1, 1, 1, ....,−1, ..., 1, 1) where the pth index is set to −1. Then,

f(1ik) = f̂(Si1) + ...− f̂(Sik) = ±1
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If f(1ik) = 1, then f̂(Sik) = 0 which contradicts our assumption that it is nonzero. If

f(1ik) = −1, then f̂(Sik) = 1 which by Parseval’s means that f̂(Si1), ..., f̂(Sik−1
) = 0 –

contradiction.

(b) Suppose, for the sake of contradiction, that there exists an f : {−1, 1}n → {−1, 1} such that
W≤1[f ] = 1 but depends on more than 1 input coordinate. If f̂(ϕ) = 0 and f̂(Si1), ..., f̂(Sik) ̸=
0 for some 1 < k ≤ n, where 1 ≤ ij ≤ n and |Sij | = 1, then part (a) argues a contradiction.

Otherwise, f̂(ϕ), f̂(Si1), ..., f̂(Sik) ̸= 0 for some 1 < k ≤ n, where 1 ≤ ij ≤ n and |Sij | = 1.
Then, without loss of generality

f(1) = f̂(ϕ) + f̂(Si1) + ...+ f̂(Sik) = 1

Then,

f(1ik) = f̂(ϕ) + f̂(Si1) + ...− f̂(Sik) = ±1

If f(1ik) = 1, then f̂(Sik) = 0 which contradicts our assumption that it is nonzero. If

f(1ik) = −1, then f̂(Sik) = 1 which by Parseval’s means that f̂(ϕ), f̂(Si1), ..., f̂(Sik−1
) = 0 –

contradiction.

(c) need to figure out

Problem 1.21

(a) Suppose, for the sake of contradiction, that there exists an f : {−1, 1}n → {−1, 1} that has
exactly 2 non-zero Fourier coefficients. By Parseval’s theorem,

f̂(S1)
2 + f̂(S2)

2 = 1

Consider input x ∈ {0, 1}n given by indices S1 ∪ S2 set to 1 and all else set to −1 (we denote
this as xS1∪S2). Then,

|f(x)| = |f̂(S1)χS1(xS1∪S2) + f̂(S2)χS2(xS1∪S2)|

= |f̂(S1) + f̂(S2)| = 1

Similarly, there exist inputs such that f(x) = ±f̂(S1) ± f̂(S2) all four combinations. Thus,
any Fourier coefficients must in essence satisfy ∥f∥1 = ∥f∥2. The only solutions to this system
are (±1, 0) and (0,±1). Thus, one of f̂(S1) or f̂(S2) is 0 and we have reached a contradiction.

(b) Suppose, for the sake of contradiction, that there exists an f : {−1, 1}n → {−1, 1} that has
exactly 3 non-zero Fourier coefficients. By Parseval’s theorem,

f̂(S1)
2 + f̂(S2)

2 + f̂(S3)
2 = 1

11



Consider input x∪3
i=1Si

|f(x)| = |
3∑

i=1

f̂(Si)χSi(x∪3
i=1Si

)| = |
3∑

i=1

f̂(Si)| = 1

Without loss of generality, assume |S1| ≤ |S2| ≤ |S3|. We now claim that there exists an input
x∗ such that χS1(x

∗) = −χS2(x
∗) = −χS3(x

∗) = 1. To see this, note that we can set x∗i = 1
for all i ∈ S1. Then, consider the following three cases

(1) S3\(S1 ∪ S2) ̸= ϕ – |S2| ≥ |S1| =⇒ S2\S1 ̸= ϕ. Thus, we can trivially make χS2(x
∗)

odd parity by choosing i ∈ S2\S1 and setting x∗i = −1. Similarly, since S3\(S1 ∪S2) ̸= ϕ
we can appropriately set j ∈ S3\(S1 ∪ S2) so as to give χS3 odd parity.

(2) S3 = (S1∪S2) – We set S2 exactly as in case (1). Then, χS3(x
∗) = χS1(x

∗)·χS2(x
∗) = −1.

(3) S3 ⊂ (S1 ∪ S2) – |S3| ≥ |S1| =⇒ S3\S1 ̸= ϕ =⇒ S3 ∩ S2 ̸= ϕ. Choose some i ∈ S3 ∩ S2
and set x∗i = −1 and set the remaining indices to 1. Then, χS2(x

∗) = χS3(x
∗) = −1.

Then,

|f(x∗)| = |f̂(S1)− f̂(S2)− f̂(S3)| = 1

From above, however,

= |2f̂(S1)− [f̂(S1) + f̂(S2) + f̂(S3)]| = |2f̂(S1)− 1| = 1

where we have assumed without loss of generality that f̂(S1) + f̂(S2) + f̂(S3) = 1. f̂(S1) = 0
and f̂(S1) = −1 are the only two solutions. If f̂(S1) = 0, f no longer has three non-zero
coefficients and we have reached a contradiction. If f̂(S1) = −1, then f̂(S2) = f̂(S3) = 0 by
Parseval’s theorem and we have reached another contradiction.

Problem 1.24 We can compute ||φ||22 directly:

||φ||22 = Ex[|φ(x)|2]
= Ex[φ(x)

2] (nonnegativity of density)

=
1

2n

∑
x∈{−1,1}n

φ(x)2

=
1

2n

∑
x∈A

φ(x)2

≥ 1

2n

∑
x∈A

(
2n

2nδ

)2

(convexity of f(z) = z2)

=
1

2n
δ2n

δ2

=
1

δ
.
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Problem 1.27 (Necessary) Suppose, for the sake of contradiction that one could determine which
linear function f is using only k queries, for k < n. However, there are at least 2n−k linear functions
that have the same mapping at these k inputs. There is no way to distinguish between these can-
didates given this information, so we have reached a contradiction and can conclude that n queries
are necessary.

(Sufficient) Consider querying f on 1k where 1k = (1, 1, 1, ...., 0, ..., 1, 1) where the kth index is
set to 0. Notice that k ∈ S ⇐⇒ f(1k) = 0 and that there is 2n−n = 1 unique f with the given
answers to these queries.
Problem 1.28

(a) We have f̂(S) ≤ 2δ ⇐⇒ dist(f, χS) ≥ 1
2 − δ and f̂(S) ≥ −2δ ⇐⇒ dist(f, χS) ≤ 1

2 + δ in
general. Now, take S ̸= S∗. By the triangle inequality (equivalently a union bound), we have:

dist(f, χS) ≤ dist(χS , χS∗) + dist(f, χS∗) =
1

2
+ δ

And:

dist(χS , f) ≥ dist(χS , χS∗)− dist(f, χS∗) =
1

2
− δ.

We conclude that −2δ ≤ f̂(S) ≤ 2δ so |f̂(S)| ≤ 2δ, which is what we wanted to show.

(b) As in the chapter, we have Pr[BLR accepts f ] = 1
2 +

1
2

∑
S⊆[n] f̂(S)

3. But now we have tighter

control on f̂(S) for all S ̸= S∗. In particular, we can write:

1

2
+

1

2

∑
S⊆[n]

f̂(S)3 =
1

2
+

1

2
f̂(S∗)3 +

1

2

∑
S ̸=S∗

f̂(S)3

≤ 1

2
+

1

2
(1− 2δ)3 +

1

2
max
S ̸=S∗

{f̂(S)} ·
∑
S ̸=S∗

f̂(S)2

≤ 1

2
+

1

2
(1− 2δ)3 + δ(1− (1− 2δ)2) (as f̂(S) ≤ |f̂(S)| ≤ 2δ for S ̸= S∗)

= 1− 3δ + 10δ2 − 8δ3.

Therefore, Pr[BLR rejects f ] ≥ 3δ − 10δ2 + 8δ3 which is what we wanted to show. On a
practical note, this implies that if the BLR Test rejects some function f with probability at
most ε, then minS dist(f, χS) = δ ≤ ε/3 approximately (ignoring higher-order terms). In
other words, f is essentially ε/3-close to some linear function (stronger than the ε-closeness
shown in the chapter).

(c) need to figure out

Problem 1.29

13



(a) (⇐) Suppose f(x) = a · x. Then,

f(x) + f(y) + f(z) = a · x+ a · y + a · z = a · (x+ y + z) = f(x+ y + z)

(⇒) Suppose f(x) + f(y) + f(z) = f(x+ y + z) and define g(x) = f(x) + f(0). Then,

g(x+ y) = f(x+ y + 0) + f(0) = f(x) + f(y) + f(0) + f(0) = g(x) + g(y)

By the above, g(x) = a · x. Thus, f(x) = g(x) + f(0) = a · x+ f(0).

(b)

Ex,y,z[f(x)f(y)f(z)f(x+ y + z)] = Ex,y[f(x)f(y)Ez[f(z)f(x+ y + z)]]

= Ex,y[f(x)f(y)(f ∗ f)(x+ y)] (Convolution definition)

= Ex[f(x)Ey[f(y)(f ∗ f)(x+ y)]]

= Ex[f(x)(f ∗ f ∗ f)(x)]

=
∑
S⊆[n]

f̂(S) ̂f ∗ f ∗ f(S) (Plancherel)

=
∑
S⊆[n]

f̂(S) ̂f ∗ (f ∗ f)(S) (Associativity of Convolution)

=
∑
S⊆[n]

f̂(S)f̂(S)f̂ ∗ f(S) (Theorem 1.27)

=
∑
S⊆[n]

f̂(S)f̂(S)f̂(S)f̂(S) (Theorem 1.27)

=
∑
S⊆[n]

f̂(S)4 (Theorem 1.27)

(c) Affine Test. Given query access to Fn
2 → F2:

• Choose x, y, z ∼ Fn
2 independently

• Query f at x, y, z, and x+ y + z

• ”Accept” if f(x+ y + z) = f(x) + f(y) + f(z)

Claim. Suppose Affine Test accepts f : Fn
2 → F2 with probability 1− ϵ. Then f is ϵ-close to

being linear.

We use the indicator function

1

2
+

1

2
f(x)f(y)f(z)f(x+ y + z) =

{
1 if f(x)f(y)f(z) = f(x+ y + z)

0 if f(x)f(y)f(z) ̸= f(x+ y + z)

14



where the output of f is encoded as ±1. Then,

1− ϵ = Px,y,z[Affine accepts f ] = Ex,y,z[
1

2
+

1

2
f(x)f(y)f(z)f(x+ y + z)]

=
1

2
+

1

2

∑
S⊆[n]

f̂(S)4 (part (b))

Rearranging, we get

1− 2ϵ =
∑
S⊆[n]

f̂(S)4

≤

∑
S⊆[n]

f̂(S)2

∑
S⊆[n]

f̂(S)2


=
∑
S⊆[n]

f̂(S)2 (Parseval)

≤ max
S⊆[n]

{f̂(S)} ·
∑
S⊆[n]

f̂(S) = max
S⊆[n]

{f̂(S)} · f(1)

≤ max
S⊆[n]

{f̂(S)}

Notice that affine functions are of the form χS + b where χS is a linear function and b ∈ Fn
2 .

Thus,

⟨f, χS + b⟩ = ⟨
∑
T⊆[n]

f̂(T )χT , χS + b⟩

=
∑
T⊆[n]

f̂(T )⟨χT , χS + b⟩

=
∑
T⊆[n]

f̂(T )⟨χT , χS⟩+
∑
T⊆[n]

f̂(T )⟨χT , b⟩

=
∑
T⊆[n]

f̂(T )⟨χT , χS⟩

= ⟨f, χS⟩ = f̂(S)

Therefore, 1 − 2dist(f, χS + b) = 1 − 2dist(f, χS) meaning that dist(f, χS + b) = dist(f, χS).
Denote S∗ = argmaxS⊆[n]{f̂(S)}. Then,

1− 2ϵ ≤ 1− dist(f, χS∗) = 1− 2dist(f, χS∗ + b)

which means that dist(f, χS∗+b) ≤ ϵ and thus that f is ϵ-close to the space of affine functions.

(d) (⇒) Suppose f is affine. Then,

f(x+ y) = f(x+ y + 0) = f(x) + f(y) + f(0)

15



(⇐) Suppose f(x+ y) = f(x) + f(y) + f(0). Then,

f(x+ y + z) = f(x) + f(y + z) + f(0)

= f(x) + f(y) + f(z) + f(0) + f(0)

= f(x) + f(y) + f(z)

Then, the following 3-random affine test gives the same guarantees as the affine test and BLR
test from 1.29(c) and the chapter.

3-Random Affine Test. Given query access to Fn
2 → F2:

• Choose x, y ∼ Fn
2 independently

• Query f at x, y, and x+ y

• ”Accept” if f(x+ y) = f(x) + f(y) + f(0)

2 Basic Concepts and Social Choice

Problem 2.2 Notice that the functions can be written as follows

(i) Majority: sgn(x1 + ...+ xn)

(ii) AND: sgn((n− 1
2) + x1 + ...+ xn)

(iii) OR: sgn((12 − n) + x1 + ...+ xn)

(iv) ±χi: sgn(±xi)

(v) ±1: sgn(±1)

Problem 2.3

(a) (⇐) Suppose f is a weighted majority function so that we can write f(x) = sgn(a0 + x1 +
. . .+ xn). f is clearly symmetric and monotone.

(⇒) Suppose f : {−1, 1}n → {−1, 1} is symmetric and monotone. By symmetry of f , we can
write f(x) = g(t(x)) where t(x) denotes the number of ones in x. Since f is monotone, we
can write:

f(−1, . . . ,−1) ≤ f(1,−1, . . . ,−1) ≤ · · · ≤ f(1, . . . , 1)

And thus
g(0) ≤ . . . ≤ g(n).
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It follows that g(k) = sgn(a + k) for some a ∈ R. But for any x we have x1 + . . . + xn =
t(x)− (n− t(x)) = 2t(x)− n and therefore t(x) = 1

2 (n+ x1 + . . .+ xn). Hence:

f(x) = g(t(x)) = sgn

(
a+

1

2
(n+ x1 + . . .+ xn)

)
= sgn(2a+ n+ x1 + . . .+ xn)

Therefore f is a weighted majority function.

(b) Suppose f : {−1, 1}n → {−1, 1} is symmetric, monotone and odd. By part (a), we can write
f(x) = sgn(a0 + x1 + . . . + xn) for some a0 ∈ R. Since f is also odd, we have sgn(a0 + x1 +
. . .+ xn) = −sgn(a0 − x1 − . . .− xn), implying that |x1 + . . .+ xn| > |a0| for all x ∈ {−1, 1}n.
Note that the minimum value of |x1 + . . . + xn| is 0 is n is even and 1 is n is odd. Since
0 > |a0| cannot hold, we must have n odd, in which case 1 > |a0| implies that we can set
a0 = 0 without loss of generality. Hence f = sgn(x1 + . . .+ xn) = Majn.

Problem 2.4 (⇒) Given a string z ∈ {−1, 1}n and real r

1A = sgn((n− 2r + 1) +
∑
i

aixi)

where ai = −zi. To see that this is true, notice that ∆(x, z) < r ⇐⇒
∑

i xizi > (n−r+1)−(r−1) =
n− 2r + 2. Equivalently, ∆(x, z) < r ⇐⇒

∑
i xi(−zi) < −(n− r + 1) + (r − 1) = −(n− 2r + 2).

(⇐) Given a linear threshold function of the form f(x) = sgn(a0 +
∑

i aixi) where |a1| = ... = |an|,
we show that it is an indicator function for some z and r. By the above, zi = − ai

|ai| and r =
⌈
n−a0

2

⌉
.

Problem 2.11 For each coordinate i ∈ S

Inf i(f) =
∑
T∋i

f̂(T )2 ≥ f̂(S)2 > 0

since f̂(S) > 0 by assumption. Therefore, all i ∈ S have non-zero influence and are thus relevant.

Problem 2.12 Both computations are self-explanatory:

Ef [Inf i[f ]] = Ef

[
Pr
x
[f(x) ̸= f(x⊕i)]

]
= Ef

[
Ex[1{f(x)̸=f(x⊕i)}]

]
= Ex

[
Ef [1{f(x)̸=f(x⊕i)}]

]
= Ex [1/2]

=
1

2
.
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Ef [I[f ]] = Ef

[
n∑

i=1

Inf i[f ]

]

=
n∑

i=1

Ef [Inf i[f ]]

=
n

2
.

Problem 2.13

(a) We compute the expected value and variance of f as follows

E[f ] = Px[f(x) = 1]− Px[f(x) = −1]

=

(
(1− 1

2w
)2

w

)
−
(
1− (1− 1

2w
)2

w

)
lim

w→∞
E[f ] =

1

e
− (1− 1

e
) =

2

e
− 1

and

Var[f ] = E[f2]− E[f ]2

= 1− E[f ]2 = 1−
(
2

(
(1− 1

2w
)2

w

)
− 1

)2

= 1−

(
4

(
(1− 1

2w
)2

w

)2

− 4

(
(1− 1

2w
)2

w

)
+ 1

)

lim
w→∞

Var[f ] = 1− (
4

e2
− 4

e
+ 1) =

4(e− 1)

e2

(b) Observe that the derivative

D1f =
f (i→1) − f (i→−1)

2

can never take value −1 for f = Tribesw,2w since the OR and AND functions are monotone
(and the composition of monotone functions is monotone). This implies the following casework

D1f =


0 if ∃j ∈ [2, ..., 2w]. AND(xj) = −1

0 if ∀j ̸= 1. AND(xj) = 1 and ∃k ∈ [2, ..., w]x1,k = 1

1 otherwise
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(c) From part (b), D1f = 1 if ∀j ̸= 1. AND(xj) = 1 and x1,k = −1 for k = 2, ..., w. Therefore,

Inf1[f ] =
2 · (2w − 1)2

w−1

2w2w

=
2 · (2w − 1)2

w

(2w − 1)2w2w

=

(
2w − 1

2w

)2w

· 2

2w − 1

lim
w→∞

Inf1[f ] =
2

e
· lim
w→∞

1

2w − 1
= 0

Since each voter is equal, the total influence is given by

I[f ] = w2wInf i[f ] =

(
2w − 1

2w

)2w

· 2w2w

2w − 1

lim
w→∞

I[f ] = ∞

Interestingly, the influence of any given voter converges to 0 while the total influence diverges
in the limit.

Problem 2.20 Recall that the Laplacian operator L has the property Lf = f(x) · sensf (x) for
f : {−1, 1}n → {−1, 1}. Therefore, we have:

Ex[sensf (x)
2] = Ex[sensf (x)f(x) · sensf (x)f(x)] (f2 = 1)

= ⟨Lf,Lf⟩

= ⟨
∑
S⊆[n]

|S|f̂(S)χS ,
∑
T⊆[n]

|T |f̂(T )χT ⟩

=
∑

S,T⊆[n]

|S||T |f̂(S)f̂(T )⟨χS , χT ⟩

=
∑
S⊆[n]

|S|2f̂(S)2

= ES∼Sf
[|S|2].

We remark that Ex[sensf (x)
3] ̸= ES∼Sf

[|S|3] in general. For instance, take f = Maj3 and observe

that Ex[sensf (x)
3] = 1

4 · 0 + 3
4 · 23 = 6 whereas ES∼Sf

[|S|3] = 1
4 · (1 + 1 + 1 + 27) = 15

2 .

Problem 2.22
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(a)

Inf i[Majn] = Pr
x
[Majn(x) ̸= Majn(x

⊕i)]

= Pr
x

∑
j ̸=i

xj = 0

 (xi must break tie)

=

(
n− 1

(n− 1)/2

)
· 21−n.

(b) Let n ∈ N be odd. Then:

Inf1[Majn]

Inf1[Majn+2]
= 4 ·

(
n−1

(n−1)/2

)(
n+1

(n+1)/2

) < 4 ·

(
n−1

(n−1)/2

)
4 ·
(

n−1
(n−1)/2

) = 1.

Here, the last inequality follows from:(
n+ 1

(n+ 1)/2

)
=
(

n
(n+1)/2

)
+
(

n
(n−1)/2

)
=
(

n−1
(n+1)/2

)
+ 2 ·

(
n−1

(n−1)/2

)
+
(

n−1
(n−3)/2

)
< 4 ·

(
n− 1

(n− 1)/2

)
due to maximality of central binomial coefficients. It follows that Inf1[Majn] is (strictly)
decreasing for odd n.

(c)

Inf1[Majn] =

(
n− 1

(n− 1)/2

)
· 21−n

=
(n− 1)!

(((n− 1)/2)!)2
· 21−n

≈ n!

((n/2)!)2
· 2−n (asymptotically the same)

=
(n/e)n · (

√
2πn+O(n−1/2)

(n/2e)n · (
√
πn+O((n/2)−1/2))2

· 2−n

=

√
2πn+O(n−1/2)

πn+O(1/n) +O(1)

=

√
2πn+O(n−1/2)

πn

=

√
2/π√
n

+O(n−3/2)
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(d) Since Majn is monotone, we have Inf i[Majn] = f̂(i). Thus:

W1[Majn] =
n∑

i=1

f̂(i)2

=
n∑

i=1

Inf i[Majn]
2

= n ·

(√
2/π√
n

+O(n−3/2)

)2

= n ·
(
2/π

n
+O(n−3) +

4

π
·O(n−2)

)
=

2

π
+O(n−2) +

4

π
·O(n−1)

∈
[
2

π
,
2

π
+

5

π
· n−1

]
(for large enough n)

Hence 2/π ≤ W1[Majn] ≤ 2/π +O(n−1), as desired.

(e) Since Majn is symmetric, we have W1[Majn] = n · f̂(1)2. By part (d), this implies

f̂(1)2 ∈
[
2

πn
,
2

πn
+O(n−2)

]
.

Since (
√
2/πn+O(n−3/2))2 = 2

πn +O(n−2)) +O(n−3) ≥ 2
πn +O(n−2)), we have:

f̂(1) ∈

[√
2

πn
,

√
2

πn
+O(n−3/2)

]
.

Finally, we have:

I[Majn] = n · f̂(1)

∈
[√

2/π ·
√
n,
√

2/π ·
√
n+O(n−1/2)

]
.

Problem 2.23 Notice that if f is monotone, then by proposition 2.31

I[f ] =
∑
i

f̂(i)

By the Cauchy-Schwarz inequality

(
∑
i

f̂(i) · 1)2 ≤ (
∑
i

f̂(i)
2
)(
∑
i

12)

≤ n (Parseval’s theorem)
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Therefore, ∑
i

f̂(i) ≤
√
n

for monotone f .

Problem 2.27 Let x1, x2, x3 be the three inputs that evaluate to 1 under f . If every dimension
i-edge is a boundary edge for x1, x2, x3, then the influence of coordinate i is maximized – namely
Inf i[f ] = 6

2n . For every coordinate to attain its maximum influence, it must be true that the
pairwise hamming distances between x1, x2, x3 are greater than 1 (if not, then there exists some
coordinate i for which x⊕i

1 = x2 but f(x1) = f(x2), meaning this dimension i-edge is not a boundary
edge). Therefore,

max
f

I[f ] =
6n

2n

which is attained by f such that the pairwise hamming distances between x1, x2, x3 are all greater
than 1.

Problem 2.28 Suppose f is even. Then f̂(S) = 0 whenever |S| is odd. Thus W1[f ] = 0 so:

I[f ] =
∑
S⊆[n]

|S| · f̂(S)2

=

n∑
k=1

k ·Wk[f ]

=

n∑
k=2

k ·Wk[f ]

≥ 2

n∑
k>0

Wk[f ]

= 2 ·Var[f ].

Equivalently Var[f ] ≤ 1
2 · I[f ], strengthening the Poincaré inequality.

Problem 2.29

(a) Since E[f ] = 0, f(ϕ) = 0. Note that

Var[f ] = E[f2]− E[f ]2 = E[f2] = 1

Var[f ] = 1 =
n∑

k=1

Wk[f ] ≤
n∑

k=1

kWk[f ] = I[f ] =
n∑

i=1

Inf i[f ] ≤ n ·MaxInf[f ]

Therefore,

1 ≤ nMaxInf[f ]

MaxInf[f ] ≥ 1

n
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(b) Observe that

I[f ] =
n∑

k=0

kWk[f ] ≥ W1[f ] + 2(1−W1[f ])

= 2−W1[f ]

= 2−
∑
i

f̂(i)
2

≥ 2−
∑
i

Inf i[f ]
2 (Exercise 2.5)

≥ 2− nMaxInf[f ]2 (Monotonicity of the quadratic)

Finally, we deduce that

nMaxInf[f ] ≥ I[f ] ≥ 2− nMaxInf[f ]2

nMaxInf[f ]2 + nMaxInf[f ]− 2 ≥ 0

MaxInf[f ] ≥
−n+

√
n2 − 4(n)(−2)

2n
(Quadratic Formula)

Thus,

MaxInf[f ] ≥ n

2
− 1

2
≥ 2

n
− 4

n2

Problem 2.31

(i) Since f ≥ 0, Ey∼Nρ(x)[f(y)] ≥ 0

(ii) Notice that f ≥ 0, f ̸= 0 =⇒ ∃z. f(z) > 0. Since p ∈ (−1, 1), Py∼Nρ(x)[y = z] > 0.
Therefore, Ey∼Nρ(x)[f(y)] ≥ Py∼Nρ(x)[y = z] · f(z) > 0.
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Problem 2.32 Let ρ1, ρ2 ∈ [−1, 1] and f : {−1, 1} → R. Observe that if y ∼ Nρ1(x) and z ∼
Nρ2(y), then for each i ∈ [n] independently, we have:

zi =

{
yi with probability ρ2

unif. random with probability 1− ρ2

=



{
xi with probability ρ1ρ2

unif. random with probability (1− ρ1)ρ2{
unif. random with probability ρ1(1− ρ2)

unif. random with probability (1− ρ1)(1− ρ2)

=

{
xi with probability ρ1ρ2

unif. random with probability 1− ρ1ρ2

Hence z ∼ Nρ1ρ2(x), which gives us:

Tρ1Tρ2f(x) = Ey∼Nρ1 (x)
[Tρ2f(y)]

= Ey∼Nρ1 (x)
[Ez∼Nρ2(y)

[f(z)]]

= Ez∼Nρ1ρ2 (x)
[f(z)]

= Tρ1ρ2f(x).

It follows that Tρ1Tρ2 = Tρ1ρ2 in general.

Problem 2.33 We show that the linear operator is a contraction on Lp by proving∑
x

Ey∼Nρ(x)[f(y)]
p ≤

∑
x

f(x)p

Observe that∑
x

Ey∼Nρ(x)[f(y)]
p =

∑
x

(∑
z

f(z)Py∼Nρ(x)[y = z]

)p

≤
∑
x

∑
z

f(z)p Py∼Nρ(x)[y = z] (Jensen’s inequality)

=
∑
z

f(z)p
∑
x

Py∼Nρ(x)[y = z]

However,∑
x

Py∼Nρ(x)[y = z] =

(
n

0

)
(
1

2
+

1

2
ρ)n +

(
n

1

)
(
1

2
+

1

2
ρ)n−1(

1

2
− 1

2
ρ)1 + ...+

(
n

n

)
(
1

2
− 1

2
ρ)n

=

n∑
i=0

(
n

i

)
(
1

2
+

1

2
ρ)n−i(

1

2
− 1

2
ρ)i

= ((
1

2
+

1

2
ρ) + (

1

2
− 1

2
ρ))n = 1n = 1 (Binomial Theorem)
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Where we think of the quantity
∑

x Py∼Nρ(x)[y = z] as the partitioned sum over x distance k from
z. Then, for y ρ-correlated with x, there must be k bit flips and n− k bit preservations. Then,∑

x

Ey∼Nρ(x)[f(y)]
p ≤

∑
z

f(z)p
∑
x

Py∼Nρ(x)[y = z]

=
∑
z

f(z)p

and we can conclude that ∥Tρf∥p ≤ ∥f∥p.

Problem 2.34 Let f : {−1, 1} → R and ρ ∈ [−1, 1]. For any x ∈ {−1, 1} we have:

|Tρf(x)| =
∣∣Ey∼Nρ(x)[f(y)]

∣∣
≤ Ey∼Nρ(x)[|f(y)|] (convexity of | · |)
= Tρ|f |(x).

Suppose ρ ∈ (−1, 1) so that for any z ∈ {−1, 1} we have Pry∼Nρ(x)[y = z] > 0. We observe that
equality above holds if and only if sgn(f(y)) = sgn(f(z)) for all y, z ∈ {−1, 1}n where f(y), f(z) ̸= 0,
meaning f ≥ 0 everywhere or f ≤ 0 everywhere. Another way of seeing this is that equality in
Jensen’s holds only if φ(t) = |t| is linear on the support of f , meaning the support of f is either
contained in R≥0 or contained in R≤0.

Problem 2.41 Observe that

d2

dρ2
Stabρ[f ] =

n∑
k=0

k(k − 1)ρk−2Wk[f ] ≥ 0

for ρ ∈ [0, 1].

Problem 2.42 Let f : {−1, 1}n → {−1, 1} and let δ ∈ [0, 1]. Let x ∼ {−1, 1}n uniformly, and for

each i ∈ [n] independently let yi =

{
−xi w.p. δ

xi w.p. 1− δ
. Then NSδ[f ] := Prx,y[f(x) ̸= f(y)]. Now,

define y(0) = (x1, . . . , xn) = x and for each i ∈ [n] define y(i) = (y1, . . . , yi, xi+1, . . . , xn) so that
y(n) = y. We make the simple observation that f(x) ̸= f(y) implies that f(y(i)) ̸= f(y(i−1)) for
some i ∈ [n]. Moreover, since x is uniformly random, the y(i) are individually uniformly random as
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well. By construction, we have y(i) =

{
(y(i−1))⊕i w.p. δ

y(i−1) w.p. 1− δ
. Therefore, we have:

NSδ[f ] = Pr[f(x) ̸= f(y)]

= Pr

[
n⋃

i=1

{f(y(i)) ̸= f(y(i−1))}

]

≤
n∑

i=1

Pr
[
f(y(i−1)) ̸= f(y(i))

]
=

n∑
i=1

Pr
[
f(y(i−1)) ̸= f(y(i)) | y(i−1) ̸= y(i)

]
· Pr
[
y(i−1) ̸= y(i)

]
=

n∑
i=1

Pr
[
f(y(i−1)) ̸= f(y(i)) | y(i−1) ̸= y(i)

]
· δ

= δ ·
n∑

i=1

Pr
z∼{−1,1}n

[f(z) ̸= f(z⊕i)]

= δ ·
n∑

i=1

Inf i[f ]

= δ · I[f ].

Problem 2.45 Let 0 < δ ≤ 1 and k ∈ N+. Observe the following inequalities:

k−1∑
j=0

(1− δ)j ≥
k−1∑
j=0

(1− δ)k−1 = (1− δ)k−1k

And
k−1∑
j=0

(1− δ)j ≤
∞∑
j=0

(1− δ)j =
1

1− (1− δ)
=

1

δ
.

Hence (1− δ)k−1k ≤ 1
δ .

Problem 2.46 Let f : {−1, 1}n → R and 0 ≤ ρ− ε ≤ ρ < 1 For t ∈ (0, 1) let g(t) =
d

dt
Stabt[f ] =∑n

k=1 kt
k−1Wk[f ]. If ε = 0 then the inequality is trivial. Otherwise, by the mean value theorem,

we can find c ∈ (ρ− ε, ρ) for which |Stabρ[f ]−Stabρ−ε[f ]| = ε|g(c)|. Thus, it suffices to show that

26



|g(c)| ≤ 1
1−ρ ·Var[f ], which we can do as follows:

|g(c)| =
∣∣∣∣ ddt ∣∣t=c

Stabt[f ]

∣∣∣∣
=

n∑
k=1

kck−1Wk[f ]

=

∣∣∣∣ ddt ∣∣t=c
Stabt[f ]

∣∣∣∣
=

n∑
k=1

1

1− c
·Wk[f ]

=

∣∣∣∣ ddt ∣∣t=c
Stabt[f ]

∣∣∣∣
=

1

1− c
·Var[f ]

≤ 1

1− ρ
·Var[f ]. (as c ≥ ρ)

Problem 2.54 We start with the base case n = 1. We have:

Var[f ] =

(
f(1)− f(−1)

2

)2

= Ex[Dif(x)
2] = I[f ].

Now, suppose assume the inequality holds for n, and let f : {−1, 1}n+1 → {−1, 1}. Consider
g, h : {−1, 1}n → R given by g(x1, . . . , xn) = f(x1, . . . , xn,−1) and h(x1, . . . , xn) = f(x1, . . . , xn, 1).
Then, we have:

E[f2] =
1

2
· E[g2 + h2] =

1

2
· E[g2] + 1

2
· E[h2]

And:

E[f ]2 =
(
1

2
· E[g] + 1

2
· E[h]

)2

=
1

4
· E[g]2 + 1

4
· E[h]2 + 1

2
· E[g] · E[h].

Moreover, we notice that for 1 ≤ i ≤ n we have Inf i[f ] =
1
2 ·Inf i[g]+

1
2 ·Inf i[h], whereas Infn+1[f ] =

E[z2] where z := Dn+1f = g−h
2 . Therefore, we can write:

I[f ] =
1

2
· I[g] + 1

2
· I[h] + E[z2]
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We now prove the desired inequality:

Var[f ] = E[f2]− E[f ]2

=

(
1

2
· E[g2] + 1

2
· E[h2]

)
−
(
1

4
· E[g]2 + 1

4
· E[h]2 + 1

2
· E[g] · E[h]

)
=

1

2
·
(
E[g2]− E[g]2

)
+

1

2
·
(
E[h2]− E[h]2

)
+

1

4
·
(
E[g]2 + E[h]2 − 2 · E[g] · E[h]

)
=

1

2
·Var[g] +

1

2
·Var[h] + E[z]2 (z = g−h

2 )

≤ 1

2
· I[g] + 1

2
· I[h] + E[z]2 (induction hypothesis)

= I[f ]− E[z2] + E[z]2

≤ I[f ] (Jensen’s inequality)

By induction, we have proved the Poincaré inequality for all n ∈ N.

Problem 2.55

(a) By definition of the Laplacian operator

Lg(x) =
n∑

i=1

Lig(x) =
n∑

i=1

g(x)− g(x⊕i)

2

=
n

2
g(x)− 1

2

n∑
i=1

∥ − xiwi +
n∑

j ̸=i

xjwj∥

≤ n

2
g(x)− 1

2
∥

n∑
i=1

−xiwi +
n∑

j ̸=i

xjwj

 ∥ (Triangle Inequality)

=
n

2
g(x)− 1

2
∥(n− 2)

n∑
i=1

xiwi∥

=
n− (n− 2)

2
g(x) = g(x) (Property of ∥ · ∥ norm)

since x ∈ {−1, 1}n was chosen arbitrarily, we can conclude that the Laplacian of g is pointwise
smaller than g.

(b) We first note that g is an even function. This is because

g(−x) = ∥
n∑

i=1

−xiwi∥ = ∥
n∑

i=1

xiwi∥ = g(x) (Property of ∥ · ∥ norm)
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Then, by exercise 2.28 we have

2Var[g] ≤ I[g] =
n∑

i=1

Inf i[g]

=
n∑

i=1

⟨g, Lig⟩ (Proposition 2.26)

= ⟨g,
n∑

i=1

Lig⟩ = ⟨g, Lg⟩ (Bilinearity of ⟨·, ·⟩)

≤ ⟨g, g⟩ = E[g2] (Part (a))

We can now deduce the Khintchine-Kahane inequality

2Var[g] = 2E[g2]− 2E[g]2 ≤ E[g2]
E[g2] ≤ 2E[g]2

E[g] ≥ 1√
2
E[g2]

1
2

Expanding, we get

Ex[∥
n∑

i=1

xiwi∥] ≥
1√
2
Ex[∥

n∑
i=1

xiwi∥2]
1
2

(c) To see that the bound is tight, we construct an example that achieves equality. Consider
V = R, n = 2, and w1 = w2 = 1. Here, we get that

Ex[|x1 + x2|] =
1

2
· 2 + 1

2
· 0 = 1

Ex[|x1 + x2|2]
1
2 =

√
1

2
· 4 + 1

2
· 0 =

√
2

=⇒ Ex[|x1 + x2|] =
1√
2
Ex[|x1 + x2|2]

1
2
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3 Spectral Structure and Learning

Problem 3.2

Problem 3.3

E[f2]− Stab1−δ[f ] =
∑
S

[
1− (1− δ)|S|

]
f̂(S)2

=
∑
k=1

n
[
1− (1− δ)k

]
Wk[f ]

≥
(
1− (1− δ)

1
δ

)
Wk[f ]

≥ (1− 1

e
) Pr

[
|S| ≥ 1

δ

]
Therefore,

Pr

[
|S| ≥ 1

δ

]
≤ E[f2]− Stab1−δ[f ]

1− 1
e

Problem 3.4 We prove the claim inductively. For, n = k it is trivially true that Px[f(x) ̸= 0] ≥
2−n = 2−k since f is not identically 0. We assume that for f : {−1, 1}n → R where deg(f) ≤ k
we have Px[f(x) ̸= 0] ≥ 2−k. Then, consider f : {−1, 1}n+1 → R such that deg(f) ≤ k and its
corresponding sub-functions f1 = f(x1, ..., xn, 1) and f2 = f(x1, ..., xn,−1). There are then two
cases

1. Sub-functions f1 and f2 are both not identically 0. Notice that because deg(f) ≤ k, it must
be the case that deg(f1), deg(f2) ≤ k. Then, by the inductive hypothesis,

Px∈{−1,1}n}[f1(x) ̸= 0] ≥ 2−k

Px∈{−1,1}n}[f2(x) ̸= 0] ≥ 2−k

Notice that

Px∈{−1,1}n+1 [f(x) ̸= 0] =
1

2

(
Px∈{−1,1}n}[f1(x) ̸= 0] + Px∈{−1,1}n}[f2(x) ̸= 0]

)
≥ 2−k

2. Without loss of generality, sub-function f2 is identically 0. By the definition of differentiation

Dn+1f =
f(x(n+1)7→1)− f(x(n+1)7→−1)

2
=
f1 − f2

2
=
f1
2

By the differentiation formula in chapter 2, deg(g) ≤ k =⇒ deg(Dig) ≤ k − 1. Therefore,
deg(f12 ) = deg(f1) = deg(Dn+1f) ≤ k − 1. By the inductive hypothesis then, Px[f1(x) ̸= 0] ≥
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21−k. We can then conclude that

Px∈{−1,1}n+1 [f(x) ̸= 0] =
1

2

(
Px∈{−1,1}n}[f1(x) ̸= 0] + Px∈{−1,1}n}[f2(x) ̸= 0]

)
≥ 1

2
· 21−k = 2−k

Note that both sub-functions cannot be identically 0 because this would contradict the assumption
that f is not identically 0. The two above cases are then exhaustive and show the claim.

Problem 3.7

(a)

|̂|fJ |z |̂|1 =
∑
S⊆J

|f̂J |z(S)|

=
∑
S⊆J

∣∣∣∣∣∣
∑
T⊆J

f̂(S ∪ T )zT
∣∣∣∣∣∣

≤
∑
S⊆J

∑
T⊆J

|f̂(S ∪ T )zT |

=
∑
S⊆J

∑
T⊆J

|f̂(S ∪ T )|

=
∑
S⊆[n]

|f̂(S)| (S = (S ∩ J) ∪ (S ∩ J))

= |̂|f |̂|1

(b) Let f̂J |z(S) ̸= 0. Then
∑

T⊆J f̂(S ∪ T )zT ̸= 0 meaning f̂(S ∪ T ) ̸= 0 for some T ⊆ J . Now,

observe that if S, S′ ⊆ J and T, T ′ ⊆ J then S ∪ T = S′ ∪ T ′ ⇐⇒ S = S′, T = T ′. In
particular, each unique S for which f̂J |z(S) ̸= 0 corresponds to at least one R = S ∪ T for

which f̂(R) ̸= 0, and the same R will not be found for multiple sets S. We conclude that

sparsity(f̂J |z) ≤ sparsity(f̂), as desired.

Problem 3.10 Consider the Fourier expansion of Dif :

Dif(x) =
∑
S⊆[n]
S∋i

.
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Thus, we can write D̂if(S) =

{
0 if i ∈ S

f̂(S ∪ {i}) if i /∈ S
. From Exercise 3.9, we know that |̂|Dif |̂|∞ ≤

∥Dif∥1, which gives us:

max
S∋i

|f̂(S)| ≤ Ex[Dif(x)]

= Ex[Dif(x)
2] (Dif → {0, 1} since f monotone)

= Inf i[f ]

= f̂(i).

It follows that |̂|f |̂|∞ is achieved by an S of cardinality 0 or 1.

Problem 3.13

(a) A must obviously be nonempty, so let a ∈ A be arbitrary. Since A is not affine, A+ a is not a
subspace of Fn

2 , meaning there exist b, c ∈ A+a for which b+c /∈ A+a. Hence, a+b, a+c ∈ A
but a+ b+ c /∈ A. Then if B = {0, b, c, b+ c}+ a = {a, a+ b, a+ c, a+ b+ c}, we have that
B is an affine subspace of dimension two, and it intersects with A on three points (all except
a+ b+ c).

(b) For the B obtained in (a), write B = H + a for some subspace H ≤ Fn
2 and let B\A = {b}.

As shown previously, we have φ̂B(S) =

{
χS(a) if S ∈ H⊥

0 otherwise
, and φ̂b(S) = χS(a). Thus,

|ψ̂(S)| = |φ̂B(S)− 1
2 φ̂b(S)| = | ± 1

2χS(a)| = 1/2, meaning |̂|ψ|̂|∞ = 1
2 .

(c) We have:

⟨ψ, f⟩ = ⟨φB, f⟩ −
1

2
· ⟨φb, f⟩

= Ex∼B[f(x)]−
1

2
· f(b)

= Ex∼B[f(x)] (b /∈ A)

= 3/4.

Then, we conclude:

|̂|f |̂|1 =
∑
S⊆[n]

|f̂(S)|

≥ 2 ·
∑
S⊆[n]

1

2
· f̂(S)

≥ 2 ·
∑
S⊆[n]

ψ̂(S) · f̂(S) (part (b))

= 2 · ⟨ψ, f⟩ (Plancherel)

= 3/2.
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Problem 3.14

|̂|f |̂|1 =
∑
S⊆[n]

|f̂(S)| ≤

∑
S⊆[n]

f̂(S)2

 1
2
∑

S⊆[n]

12

 1
2

(Cauchy Schwartz)

≤ 1 · 2n/2 (E[f2] ≤ 1)

Now, consider the inner product function IP 2n : {−1, 1}2n → {−1, 1}. From exercise 1.1, we know

that |ÎP (S)| = 1
2n for all S ⊆ [2n]. Therefore,

|̂|IP |̂|1 =
∑

S⊆[2n]

|ÎP (S)|

=
1

2n
· 22n = 2n = 22n/2

Therefore, for any n ∈ N, IP 2n achieves equality (which also implies the bound is tight).

Problem 3.16 Consider set F = {S|f̂(S) ≥ ϵ

|̂|f |̂|1
}. We first show that |F| ≤ |̂|f |̂|

2

1
ϵ . Suppose, for

the sake of contradiction that |F| > |̂|f |̂|
2

1
ϵ . Then,

∑
S∈F

f̂(S)2 ≥ |F| ·min
S∈F

f̂(S)2 >
|̂|f |̂|

2

1

ϵ
· ϵ

|̂|f |̂|1
= |̂|f |̂|1

Contradiction. Finally, note that∑
S/∈F

f̂(S)2 ≤ max
S/∈F

f̂(S) ·
∑
S/∈F

f̂(S)

≤ ϵ

|̂|f |̂|1
· |̂|f |̂|1 = ϵ

and we can conclude that f is ϵ-concentrated on F .
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Problem 3.17 For any S, we have |ĝ(S)| ≤ |ĝ − f(S)|+ |f̂(S)|. Squaring both sides, and summing
over F , we have:∑

S/∈F

ĝ(S)2 ≤
∑
S/∈F

(|ĝ − f(S)|+ |f̂(S)|)2

≤
∑
S/∈F

ĝ − f(S)2 +
∑
S/∈F

f̂(S)2 + 2 ·
∑
S/∈F

|ĝ − f(S)| · |f̂(S)|

≤ |̂|g − f |̂|
2

2 +
∑
S/∈F

f̂(S)2 + 2 ·
∑
S/∈F

|ĝ − f(S)| · |f̂(S)|

= ∥g − f∥22 +
∑
S/∈F

f̂(S)2 + 2 ·
∑
S/∈F

|ĝ − f(S)| · |f̂(S)| (Parseval’s)

≤ ε1 + ε2 + 2 ·
∑
S/∈F

|ĝ − f(S)| · |f̂(S)|

≤ ε1 + ε2 + 2

√√√√(∑
S/∈F

ĝ − f(S)2

)
·

(∑
S/∈F

f̂(S)2

)
(Cauchy-Schwarz)

≤ ε1 + ε2 + 2
√
ε1ε2 (same bounds as before)

≤ 2(ε1 + ε2). (AM-GM inequality)

Hence, g is 2(ε1 + ε2)-concentrated on F , as desired.

Problem 3.19 We assume that f can be computed by decision tree T . Then, notice that −f(x)
can be computed by −T , where −T flips the outputs at leaf nodes of tree T . Decision tree −T
retains size s and depth k. Furthermore, the dual of f is defined as f † = −f(−x). It suffices to
show that f(−x) can be computed by decision tree of size s and depth k. Decision tree T (−) that
flips every value along an edge of tree T computes f(−x). Decision tree T (−) retains size s and
depth k. Therefore, decision tree −T (−) computes f † with size s and depth k.

Problem 3.22 We observe that T ′(x) ̸= T (x) only if |Cp(x)| > log(s/ε). Since a computation
path of length ℓ is followed by at most 2n−ℓ inputs, each truncated computation path is followed by
at most 2n−log(s/ε) = 2n · εs inputs. Since the number of computation paths is the number of leaves,
namely s, it follows that T ′(x) ̸= T (x) can only occur on at most s · 2n · ε

s = ε2n inputs, meaning
the function computed by T ′ is ε-close to the function computed by T .

Problem 3.23 Given function f that is computable by a decision tree, we construct a linear
threshold function and prove its equivalence with f . By definition, a decision list only contains one
path of internal nodes, which we denote xi0 , ..., xik where xil is at level l. Notice that xi0 , ..., xik−1

each connect to exactly one leaf while xik connects to two leaves. To see this, suppose that xil is the
first internal node in the decision list that connects to two leaves for some l ∈ {0, ..., k − 1}. Then,
internal nodes xil+1

onwards cannot exist. Conversely, if xik did not connect to two leaf nodes, then
another internal node xik+1

must exist.

34



Now consider xil and define tl corresponding to leaf edges as follows

tl =



xil
+1

2 · 2n−l if xil = 1 =⇒ f(x) = 1
xil

+1

2 · −2n−l if xil = 1 =⇒ f(x) = −1
xil

−1

2 · −2n−l if xil = −1 =⇒ f(x) = 1
xil

−1

2 · 2n−l if xil = −1 =⇒ f(x) = −1

Then, let g(x) = sgn(
∑k−1

l=0 tl + t
(1)
k + t

(2)
k ) where t

(1)
k and t

(2)
k denote the two leaf edges for xik .

We claim that ∀x.g(x) = f(x). To see this, consider g(x) and f(x) for arbitrary input x and
let the traversal down the decision list terminate at a leaf on level l. This means ts = 0 for all
s ∈ {0, ..., l − 2}. In particular, |tl−1| = 2n+1−l. Then, no matter the satisfiability of leaf edges

level l and below, sgn(
∑k−1

l=0 tl + t
(1)
k + t

(2)
k ) = sgn(tl) since

∑l
r=0 2

r = 2r+1 − 1. Therefore, g(x)
correctly reports the value of the first satisfied leaf edge in the decision list computing f(x) and we
can conclude that f is therefore a linear threshold function.

Problem 3.24 Consider

Problem 3.25 Let f be computable by read-once decision tree T . Notice that T must be complete.
For, if not, there exists an internal node v with fewer than two children. Suppose v lies at level
l. For l = k − 1, v lies at the deepest level and does not have two leaf children – a contradiction.
For l < k − 1, v has exactly one child which we denote w. But this means that any path reaching
v must reach w, giving rise to an equivalent simplified tree T ′ with node v spliced out. Tree T ′,
however, then has a leaf to node path via w of length less than k – a contradiction.

We show that for internal node v representing variable xi at level l ∈ {0, ..., k − 2} we have
Inf i[f ] = 2−l−1. To see this, first notice both the left and right subtrees of v contain equal amounts
of −1 and 1 leaf nodes. We denote Xv = {x ∈ {0, 1}n|The path of x in T passes through v}. Notice
that |Xv| = 2n−l. Now consider flipping coordinate i for an x ∈ Xv. Because T is read-once, the
path x takes in the right subtree of v is independent of the path taken in the left subtree. Then,
Px∈Xv [f(x

⊕i) = 1] = Px∈Xv [f(x
⊕i) = −1] = 1

2 . Therefore, Px∈Xv [f(x
⊕i) ̸= f(x)] = 1

2 . The influence

of coordinate i is then
1
2
·2n−l

2n = 2−l−1.

For internal node s representing coordinate j on level l = k − 1 have influence 2n−l = 2n−(k−1). By
a similar, argument, 2n−(k−1) inputs x reach node s at the deepest level. Because each node at level
k has a leaf of each −1 and 1, it follows that Px∈Xs [f(x

⊕j) ̸= f(x)] = 1. The influence of coordinate

j is then 2n−k+1

2n = 21−k.
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The total influence is then

I[f ] = 2−n

(
2n−k+1 · 2k−1 +

k−2∑
l=0

2n−l−1 · 2l
)

(Completeness of T)

= 2−n
(
2n + (k − 2) · 2n−1

)
= 1 +

k − 2

2
=
k

2

This can also be seen via expected sensitivity. I[f ] = Ex[sens(x)] =
k
2 since every input x traverses

a path of length k in T , where the probability that any variable is pivotal is 1
2 (due to the indepen-

dence of subtrees and even leaf count).

Problem 3.28 By definition, we have:

f̂⊆J(S) = Ex∼{−1,1}n [f
⊆J(x) · χS(x)] = Ex∼{−1,1}n [Ey∼{−1,1}J [f(xJ , y)] · χS(x)].

Now, if S ⊆ J then χS(x) depends only on xJ , so the above expression is equal to:

Ex∼{−1,1}J [Ey∼{−1,1}J [f(xJ , y)] · χS(x)] = Ez∈{−1,1}n [f(z) · χS(z)] = f̂(S).

If instead S ⊈ J , then we can find some i ∈ S\J . Then, we can rewrite the previous expression as:

Ex ̸=i∈{−1,1}n−1

[
E
y∼{−1,1}J

[
Exi∼{−1,1}[f(xJ , y) · χS(x)]

]]
Since i ∈ S, we have χS(x) = −χS(x

⊕i), and since i /∈ J , we have f(xJ , y) = f((x⊕i)J , y). There-
fore, flipping xi from 1 to −1 will negate the random variable in the innermost expectation, meaning

the innermost expectation (over xi) evaluates to 0, and hence f̂⊆J(S) = 0 in this case. The desired
Fourier expansion follows.

Problem 3.30 Since the leaf b is a depth-k, the set of coordinates J encountered on the computation
path to b satisfies |J | ≤ k. Moreover, J has the property that f(a, y) = b for any a ∈ {−1, 1}J , y ∈
{−1, 1}J . It follows that xJ = a =⇒ f⊆J(x) = b. Thus f⊆J(x) =

∑
S⊆J f̂(S)χS(x) = b. Let

x ∈ {−1, 1}n such that xJ = a. Then:

|b| =

∣∣∣∣∣∣
∑
S⊆J

f̂(S)χS(x)

∣∣∣∣∣∣
≤
∑
S⊆J

|f̂(S)χS(x)|

=
∑
S⊆J

|f̂(S)|.

Therefore, there exists some S ⊆ J for which |f̂(S)| ≥ |b|
2|J | ≥

|b|
2k
. Hence |̂|f |̂|∞ ≥ |b|

2k
, as desired.
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Problem 3.33 To learn f with 0 error, we must randomly sample (x, f(x)) for all x. We denote
random variable Xi to be the number of draws required to obtain the ith unique pair, given that
we have obtained i− 1 unique pairs. Notice then that X =

∑2n

i=1Xi is the total number of random
draws needed to learn f with 0 error. In expectation

E[X] = E[
2n∑
i=1

Xi] =
2n∑
i=1

E[Xi]

Notice that Xi is a geometric random variable with parameter p = 2n−i+1
2n . Therefore, E[Xi] =

2n

2n−i+1 and

E[X] = 2n
2n∑
i=1

1

2n − i+ 1

= 2n
2n∑
i=1

1

i

≤ 2n log(2n)

Therefore, we require Õ(2n) draws in expectation to learn f with zero error. Then, by the Markov
bound

P[
2n∑
i=1

Xi ≥ 10n2n] ≤ n2n

10n2n
= 0.1

So f can be learned with 0 error with 0.9 probability using Õ(2n) random samples.

Problem 3.40

(a) Our verification algorithm will work as follows: sample k (to be determined later) random
examples (x, f(x)) and compute each h(x). If the proportion of examples where f(x) ̸= h(x)
is less than 3ε

4 then output ‘YES’, and otherwise output ‘NO’. Formally, for 1 ≤ i ≤ k let

Xi = 1 if f(xi) ̸= h(xi) and 0 otherwise. Let Y =
∑k

i=1Xi and X := E[Y ] = dist(f, h) · k.
Observe that in order for our algorithm to mistakenly reject h for which dist(f, h) ≤ ε/2, or
for it to mistakenly accept h for which dist(f, h) > ε, we would need |Y −X| ≥ εk

4 . But by
the Chernoff bound, we have:

Pr
[
|Y −X| ≥ εk/4

]
≤ e−ckε2

= e− log(1/δ) (set k = log(1/δ)
cε2

)

= δ.

Hence, our algorithm works with the desired error upper bound. Now, since we request
k = log(1/δ) · poly(1/ε) examples, each of which taking O(n+ T ) time (parsing x, computing
h), in total our verification algorithm takes poly(n, T, 1/ε) · log(1/δ) time, as desired.

(b) need to finish
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Problem 3.43

(a) Observe that

Px[γ · x = γ′ · x] = Px[(γ ⊕ γ′) · x = 0]

where we denote γ′′ ∈ {0, 1}n. Since γ ̸= γ′, there must exist some index i ∈ [n] for which
γ′′i = 1. Now consider all inputs x ∈ {0, 1}n−1 that map to indices [n]\{i}. Then,

γ′′ · x =

 ∑
j∈[n]\{i}

γ′′j xj

+ xi

We establish a bijection between the set of x such that γ′′ · x = 0 and x such that γ′′ · x = 1.

Let x ∈ {0, 1}n−1 correspond to the indices [n]\{i}. Then, c =
[∑

j∈[n]\{i} γ
′′
j xj

]
∈ {0, 1}.

Then, γ′′ · x = c+ xi and the two settings of xi yield different results to the dot product. We
then have a 1-1 correspondence between the two sets and can therefore conclude that

Px[γ · x = γ′ · x] = 1

2

(b) We begin by observing that if x(1), ..., x(m) are the n basis vectors of F̂n
2 then

∀i ∈ [n]. γ · x(i) = γ′ · x(i) ⇐⇒ ∀i ∈ [n]. (γ ⊕ γ′) · x(i) = 0

⇐⇒ γ ⊕ γ′ ∈ F̂n
2

⊥
⇐⇒ γ ⊕ γ′ = 0 ⇐⇒ γ = γ′

So drawing n linearly independent vectors will guarantee the equivalence of γ and γ′. Given
that we have drawn k linearly independent vectors, its span has size 2k. Then, the probability
of drawing a new linearly independent vector is 2n−2k

2n . Therefore, it takes 2n

2n−2k
random

draws in expectation to find the k+1th new linearly independent vector. We denote random
variable Xi to count the number of draws to find the ith linearly independent vector given
i− 1 have been found. By the Markov bound,

P[X =
n∑

i=1

Xi ≥ 20n] ≤ E[X]

20n
=

1

20n

n∑
i=1

2n

2n − 2i−1

≤ 2n

20n
=

1

10

Therefore, for C ≥ 20, x(1), ..., x(m) will contain a basis for F̂n
2 with at least 0.9 probability.

Then ∀i ∈ [n]. γ · x(i) ⇐⇒ γ = γ′.

(c) Linear functions f : {0, 1}n → {0, 1} are of the form f(x) = a · x. Consider drawing m = Cn
random (x, f(x)) pairs for C computed in part (b). With high probability, a basis will exist
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in this set. We construct matrix M ∈ {0, 1}n×n with row i equal to x
(i)
b , the ith basis vector,

and vector v with vi = f(x
(i)
b ). We then solve the system

Mγ = v

by computing γ = vM−1. Notice that M has full rank since it comprises of a basis of F̂n
2 and

is thus invertible. Matrix inversion and multiplication both take roughly O(nw) time.

4 DNF Formulas and Small Depth Circuits

Problem 4.1 For a function f : {0, 1}n → {0, 1}, we construct the following DNF ϕ:

ϕ =
∨

(a1,...,an)∈f−1(1)

n∧
i=1

{
xi if ai = 1

xi if ai = 0

By construction, we have f(a1, . . . , an) = 1 ⇐⇒ ϕ(a1, . . . , an) = 1, meaning f = ϕ. Moreover, ϕ
consists of at most 2n terms, each of which has width n, as desired.

Problem 4.2 Consider CNF f given by

f =
∧
c∈C

∨
i∈c
xi

where C is the set of clauses and each c ∈ C is set of variable indices. Then notice that

f †(x) = ¬f(¬x) = ¬
∧
c∈C

∨
i∈c

¬xi

=
∨
c∈C

∧
i∈c
xi (DeMorgan’s law)

which is exactly the DNF resulting from swapping ORs and ANDs.

Problem 4.3 If ϕ is a monotone DNF, we observe that flipping any coordinate of the input from
False to True cannot make any term False, since the AND function is monotone. Therefore, it
cannot turn the entire DNF formula from True to False, meaning ϕ computes a monotone function.

If f : {0, 1}n → {0, 1} is a monotone function, we slightly adapt the construction from Problem
4.1:

ϕ =
∨

(a1,...,an)∈f−1(1)

n∧
i=1

{
xi if ai = 1

1 if ai = 0
.

Here, the 1’s in each term can be omitted, leaving a disjunction of conjunctions of unnegated
variables and hence a monotone DNF ϕ. To show that ϕ computes f , first observe that f(a) = 1
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implies that (a1, . . . , an) ∈ f−1(1), meaning some term of ϕ is true and hence ϕ(a) = 1. Therefore,
it suffices to show that ϕ(a) = 0 whenever f(a) = 0. Suppose for contradiction that f(a) = 0
and ϕ(a) = 1 for some a ∈ {0, 1}n. Since ϕ(a) = 1, there must exist some term in ϕ that is
true at a. By construction, then, there is some b = (b1, . . . , bn) ∈ {0, 1}n for which f(b) = 1 and
bi = 1 =⇒ ai = 1 for all i. But then b ≤ a coordinate-wise, and applying monotonicity of f
yields 1 = f(b) ≤ f(a) = 0, a contradiction. Hence, f = ϕ meaning any monotone function can be
computed by a monotone DNF.

The nonmonotone DNF ϕ = (x1∧x2)∨(x1∧x2) computes the monotone function f(x1, x2) = x1.
Hence, a nonmonotone DNF may compute a monotone function.

Problem 4.4

(a) We first remark that the statement of Exercise 3.30 can easily be adapted to say: “Suppose

f : {−1, 1}n → R is computable by a DNF that has a term of width k. Then |̂|f |̂|∞ ≥ 2−k”.
We justify this adaptation by referencing the proof supplied in this document, and considering
the restriction f⊆J where J are the literals in a term of width k instead of the literals in a
branch of depth k. Moreover, we observe that the proof actually gave us the existence of
some S where |S| ≤ k and |f̂(S)| ≤ |b|

2k
. Note that in the case of a DNF, b = ±1 so |b| = 1

necessarily.

Problem 4.5

Problem 4.7

Problem 4.9 Observe that

EJ,z[Inf i[fJ |z]] = EJ [Ez[Inf i[fJ |z]]] + EJ [Ez[Inf i[fJ |z]]]

= EJ [Ez[Inf i[fJ |z]|i ∈ J ]] · PJ [i ∈ J ] + EJ [Ez[Inf i[fJ |z]|i /∈ J ]] · PJ [i /∈ J ]

= δ · EJ [Ez[Inf i[fJ |z]|i ∈ J ]]

= δ · EJ

[∑
z∈{0,1}|J̄| Inf i[fJ |z]

2|J̄ |

]

For every x ∈ {x ∈ {0, 1}n|f(x) ̸= f(x⊕i)}, consider the mapping g : {0, 1}n → {0, 1}|J̄ | such that
g : x 7→ xJ̄ . Let Ii = {x ∈ {0, 1}n|f(x) ̸= f(x⊕i} and Iiz = {x ∈ {0, 1}|J ||f(x|z) ̸= f(x⊕i|z)}. Then,

Inf i[fJ |z] =
|Iiz|
2|J̄ |
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where x|z denotes concatenation. Then it is true that x ∈ Ii ∧ g(x) = z ⇐⇒ xJ ∈ Iiz. Therefore,

= δ · EJ

 ∑
z∈{0,1}|J̄|

|Iiz|
2|J |2|J̄ |


=

δ

2n
·
∑

z∈{0,1}|J̄|

|Iiz|

=
δ

2n
· |Ii| = δ · |Ii|

2n
= δ · Inf i[f ]

Problem 4.11

Problem 4.16

5 Majority and Threshold functions
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