## Lecture 8: Compressed Sensing

## 1 Numerical Linear Algebra

### 1.1 Closing Remarks

Numerical linear algebra is concerned with designing faster algorithms for
(i) Least Square Regression: $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}$. Last lecture, we used a matrix $S$ to be an Oblivious Space Embedding (OSE) to get an approximation $\approx \min _{x \in \mathbb{R}^{n}}\|S(A x-b)\|_{2}$. Methods seen from last lecture can be extended to achieve run-time $O\left(\mathrm{nnz}(A)+\left(\frac{d}{\epsilon}\right)^{O(1)}\right)$ where nnz $(A)$ denotes the number of non-zero entries in $A$. In some cases, dimension reduction matrix $S$ can be chosen not to be OSE, but rather a specific construction dependent on $A$. This can achieve run-time $O\left(\log \frac{1}{\epsilon} \cdot\left(\mathrm{nnz}(A)+d^{O(1)}\right)\right)$.
(ii) Regression under different norms: $\min _{x \in R^{n}}\|A x-b\|_{l}$ for $l \neq 2$. The 1-norm corresponds to the lasso-regression which promotes sparsity. An analogous construction of an OSE $S$ for $\ell_{1}$ with approximation factor $\alpha=d^{O(1)}$ can be used to achieve run-time $O\left(\frac{1}{\epsilon^{O(1)}} \cdot\left(\mathrm{nnz}(A)+d^{O(1)}\right)\right)$.
(iii) Rank-k Approximation or Matrix multiplication approximation: This problem can be approached similarly by applying a dimension reduction and solving the problem in lower dimensions. In some cases, one may consider applying a dimension reduction $S \in \mathbb{R}^{k \times n}$ to $A \in \mathbb{R}^{n \times n}$ from both directions (i.e. $S A S^{T}$ ).

## 2 Compressed Sensing

### 2.1 Problem Introduction

Compressed sensing is a problem originating from digital signal processing. Given a vector $x \in \mathbb{R}^{n}$, we design a "sensing matrix" $A \in \mathbb{R}^{m \times n}$ to make $m$ linear measurements on $x$. In particular, $y=A x$ and our goal is to recover $x$ from $y$. We generally assume $m \ll n$, so $A$ is not necessarily invertible. Therefore, $x$ cannot be fully recovered, so we make the basic assumption that $x$ is $k$-sparse in some basis. Suppose that $x$ is $k$-sparse in some basis apart from the standard basis. Then, $x=\varphi \cdot z$ where $z$ is the $k$-sparse representation of $x$ in the new basis and $\varphi$ is the change of basis linear transformation. It follows that

$$
y=A \cdot \varphi \cdot z=A^{\prime} \cdot z
$$

where $A^{\prime}=A \cdot \varphi$ is our new sensing matrix acting on $k$-sparse vector $z$.
There is a natural trade-off between the number of measurements made, $m$, and how well we can recover $x$. Note that the constants in our setting of $m$ are an important and active area of research.

### 2.2 Formalization

In more precise terms, we assume the original signal $x$ is well-approximated by a $k$-sparse vector. This motivates the following problem

$$
L_{0}(y)=\underset{\substack{x^{*} \in \mathbb{R}^{n} \\ A x^{*}=y}}{\arg \min }\left\|x^{*}\right\|_{0}
$$

Where $A$ is designed such that $L_{0}(y)$ approximately recovers $x$. For a fixed $A$, computing $L_{0}(y)$ is known to be NP-Hard. Work done in [CT05] motivates a relaxation of this problem to the following $\ell_{1}$ minimization problem

$$
L_{1}(y)=\underset{\substack{x^{*} \in \mathbb{R}^{n} \\ A x^{*}=y}}{\arg \min }\left\|x^{*}\right\|_{1}
$$

Observe that $L_{1}(y)$ is a linear programming problem that can be expressed as

$$
\begin{array}{cl}
\text { Minimize } & \sum_{i=1}^{n} l_{i} \\
\text { Subject to } & A x^{*}=y \\
& -l_{i} \leq x_{i}^{*} \leq l_{i} \quad \forall i \in[n]
\end{array}
$$

which can be solved in polynomial time. Because $x$ is well-approximated by a $k$-sparse vector, we would ideally like to find

$$
x^{*}=\underset{\substack{x^{\prime} \in \mathbb{R}^{n} \\\left\|x^{\prime}\right\|_{0} \leq k}}{\arg \min }\left\|x-x^{\prime}\right\|_{1}
$$

Here $x^{*}$ is the vector that keeps the largest $k$ coordinates of $x$ and zeroes out the others. Because we only have linear measurements of $x$, we resort to a more modest approximation via error

$$
\operatorname{Err}_{1}^{k}(x):=\min _{\substack{x \in \mathbb{R}^{n} \\\|x\|_{0} \leq k}}\left\|x-x^{\prime}\right\|_{1}
$$

We will show that $x^{*}=L_{1}(y)$ satisfies

$$
\begin{equation*}
\left\|x-x^{*}\right\|_{1} \leq c \cdot \operatorname{Err}_{1}^{k}(x) \tag{1}
\end{equation*}
$$

where we typically take $c=1+\epsilon$ for $\epsilon>0$, but sometimes $c$ can also be a concrete constant.
Theorem 1. If $A$ is i.i.d. $\mathcal{N}(0,1)$ with $m=O\left(k \log \left(\frac{n}{k}\right)\right)$ then Eq.(1) holds for $c=O(1)$ with $90 \%$ probability.

We can achieve $c=1+\epsilon$ for $m$ a function of $\epsilon$. Furthermore, $x^{*}=L_{1}(y)$ is not necessarily $k$-sparse. However, it is the case that if $x$ is $k$-sparse, then $x^{*}=x$. A priori, this last point is not immediately clear in the setting of the $\ell_{1}$ relaxation. At a high level, this is a result of careful choice of $A$. We will see in the following lectures that for $A$ an RIP matrix, theorem 1 is true with probability 1 . Then, it suffices
to show that a random Gaussian matrix is RIP with high probability.
But why is it okay to relax $L_{0}(y)$ to $L_{1}(y)$ ? $L_{1}(y)$ is the "closest" convex relaxation of $L_{0}(y)$. Consider the following example, with $n=2, m=1, k=1$


Here, the black line corresponds to $A x^{*}=y$. The red points are the solution set of $L_{0}(y)$. The blue points correspond to those vectors $x$ for which $\|x\|_{1}=\epsilon$ for increasing values of $\epsilon$. We note that the solution the $L_{1}(y)$ problem lies at the corner of $\ell_{1}$ ball in this case. The following diagram illustrates the idea of "convex relaxation".


Here, the gray points represent those $x$ with $\|x\|_{0}=1$ and $\|x\|_{\infty} \leq \epsilon$ and the blue represent the $x$ with $\|x\|_{1} \leq \epsilon$. Notice that the blue set is the smallest convex body containing the gray.

