COMS E6998-9: Algorithms for Massive Data (Fall’23) Oct. 2, 2023

Lecture 8: Compressed Sensing

Instructor: Alex Andoni Scribe: Krish Singal

1 Numerical Linear Algebra

1.1

Closing Remarks

Numerical linear algebra is concerned with designing faster algorithms for

(i)

(i)

(iii)

Least Square Regression: mingegn ||Ax — b||2. Last lecture, we used a matrix S to be an Oblivious
Space Embedding (OSE) to get an approximation ~ mingcgn ||S(Az — b)||2. Methods seen from
last lecture can be extended to achieve run-time O(nnz(A) + (g)o(l)) where nnz(A) denotes the
number of non-zero entries in A. In some cases, dimension reduction matrix S can be chosen
not to be OSE, but rather a specific construction dependent on A. This can achieve run-time
O(log % - (nnz(A) + d°MW)y).

Regression under different norms: mingepn ||Az — b||; for I # 2. The l-norm corresponds to the
lasso-regression which promotes sparsity. An analogous construction of an OSE S for ¢; with
approximation factor o = d°() can be used to achieve run-time O(eo% - (nnz(A) + d°M)).

Rank-k Approximation or Matrix multiplication approximation: This problem can be approached
similarly by applying a dimension reduction and solving the problem in lower dimensions. In some
cases, one may consider applying a dimension reduction S € R¥*" to A € R™ ™ from both directions

(i.e. SAST).

2 Compressed Sensing

2.1

Problem Introduction

Compressed sensing is a problem originating from digital signal processing. Given a vector x € R", we

design a “sensing matrix” A € R™*™ to make m linear measurements on z. In particular, y = Ax and

our goal is to recover x from y. We generally assume m < n, so A is not necessarily invertible. Therefore,

x cannot be fully recovered, so we make the basic assumption that x is k-sparse in some basis. Suppose
that x is k-sparse in some basis apart from the standard basis. Then, x = ¢ - z where z is the k-sparse
representation of x in the new basis and ¢ is the change of basis linear transformation. It follows that

y=A-p-z=A"-2

where A’ = A - ¢ is our new sensing matrix acting on k-sparse vector z.

There is a natural trade-off between the number of measurements made, m, and how well we can recover
. Note that the constants in our setting of m are an important and active area of research.



2.2 Formalization

In more precise terms, we assume the original signal = is well-approrimated by a k-sparse vector. This
motivates the following problem

Lo(y) = argmin ||z*[|o
z*eR™
Ax*=y

Where A is designed such that Lo(y) approximately recovers x. For a fixed A, computing Lg(y) is
known to be NP-Hard. Work done in [CT05] motivates a relaxation of this problem to the following ¢;
minimization problem

Ly(y) = argmin [|z” |1
z*ER™
Azx*=y

Observe that Li(y) is a linear programming problem that can be expressed as

n
Minimize g l;
=1

Subject to  Ax* =1y

which can be solved in polynomial time. Because x is well-approximated by a k-sparse vector, we would
ideally like to find

r* = argmin ||z — 2’|

Here z* is the vector that keeps the largest k£ coordinates of x and zeroes out the others. Because we
only have linear measurements of x, we resort to a more modest approximation via error

Bref(e) = min [lo — /],
lzllo<k
We will show that x* = L (y) satisfies
lz — 2*[ly < ¢-Enf(z) (1)

where we typically take ¢ = 1 4 € for € > 0, but sometimes ¢ can also be a concrete constant.

Theorem 1. If A is i.i.d. N(0,1) with m = O(klog(%)) then Eq.(1) holds for ¢ = O(1) with 90%
probability.

We can achieve ¢ = 1 + ¢ for m a function of e. Furthermore, z* = L;i(y) is not necessarily k-sparse.
However, it is the case that if x is k-sparse, then * = x. A priori, this last point is not immediately clear
in the setting of the ¢ relaxation. At a high level, this is a result of careful choice of A. We will see in
the following lectures that for A an RIP matrix, theorem 1 is true with probability 1. Then, it suffices



to show that a random Gaussian matrix is RIP with high probability.

But why is it okay to relax Lo(y) to Li(y)? Li(y) is the “closest” convex relaxation of Ly(y). Con-
sider the following example, with n =2, m =1k =1

Here, the black line corresponds to Az* = y. The red points are the solution set of Lg(y). The blue
points correspond to those vectors x for which ||z||; = € for increasing values of e. We note that the
solution the L;(y) problem lies at the corner of ¢; ball in this case. The following diagram illustrates the
idea of “convex relaxation”.
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Here, the gray points represent those z with ||z|lop = 1 and ||z||oc < € and the blue represent the x with
||z||1 < e. Notice that the blue set is the smallest convex body containing the gray.



