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Lecture 8: Compressed Sensing

Instructor:Alex Andoni Scribe:Krish Singal

1 Numerical Linear Algebra

1.1 Closing Remarks

Numerical linear algebra is concerned with designing faster algorithms for

(i) Least Square Regression: minx∈Rn ∥Ax− b∥2. Last lecture, we used a matrix S to be an Oblivious

Space Embedding (OSE) to get an approximation ≈ minx∈Rn ∥S(Ax − b)∥2. Methods seen from

last lecture can be extended to achieve run-time O(nnz(A) + (dϵ )
O(1)) where nnz(A) denotes the

number of non-zero entries in A. In some cases, dimension reduction matrix S can be chosen

not to be OSE, but rather a specific construction dependent on A. This can achieve run-time

O(log 1
ϵ · (nnz(A) + dO(1))).

(ii) Regression under different norms: minx∈Rn ∥Ax − b∥l for l ̸= 2. The 1-norm corresponds to the

lasso-regression which promotes sparsity. An analogous construction of an OSE S for ℓ1 with

approximation factor α = dO(1) can be used to achieve run-time O( 1
ϵO(1) · (nnz(A) + dO(1))).

(iii) Rank-k Approximation or Matrix multiplication approximation: This problem can be approached

similarly by applying a dimension reduction and solving the problem in lower dimensions. In some

cases, one may consider applying a dimension reduction S ∈ Rk×n to A ∈ Rn×n from both directions

(i.e. SAST ).

2 Compressed Sensing

2.1 Problem Introduction

Compressed sensing is a problem originating from digital signal processing. Given a vector x ∈ Rn, we

design a “sensing matrix” A ∈ Rm×n to make m linear measurements on x. In particular, y = Ax and

our goal is to recover x from y. We generally assume m ≪ n, so A is not necessarily invertible. Therefore,

x cannot be fully recovered, so we make the basic assumption that x is k-sparse in some basis. Suppose

that x is k-sparse in some basis apart from the standard basis. Then, x = φ · z where z is the k-sparse

representation of x in the new basis and φ is the change of basis linear transformation. It follows that

y = A · φ · z = A′ · z

where A′ = A · φ is our new sensing matrix acting on k-sparse vector z.

There is a natural trade-off between the number of measurements made, m, and how well we can recover

x. Note that the constants in our setting of m are an important and active area of research.
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2.2 Formalization

In more precise terms, we assume the original signal x is well-approximated by a k-sparse vector. This

motivates the following problem

L0(y) = argmin
x∗∈Rn

Ax∗=y

∥x∗∥0

Where A is designed such that L0(y) approximately recovers x. For a fixed A, computing L0(y) is

known to be NP-Hard. Work done in [CT05] motivates a relaxation of this problem to the following ℓ1
minimization problem

L1(y) = argmin
x∗∈Rn

Ax∗=y

∥x∗∥1

Observe that L1(y) is a linear programming problem that can be expressed as

Minimize
n∑

i=1

li

Subject to Ax∗ = y

−li ≤ x∗i ≤ li ∀i ∈ [n]

which can be solved in polynomial time. Because x is well-approximated by a k-sparse vector, we would

ideally like to find

x∗ = argmin
x′∈Rn

∥x′∥0≤k

∥x− x′∥1

Here x∗ is the vector that keeps the largest k coordinates of x and zeroes out the others. Because we

only have linear measurements of x, we resort to a more modest approximation via error

Errk1(x) := min
x∈Rn

∥x∥0≤k

∥x− x′∥1

We will show that x∗ = L1(y) satisfies

∥x− x∗∥1 ≤ c · Errk1(x) (1)

where we typically take c = 1 + ϵ for ϵ > 0, but sometimes c can also be a concrete constant.

Theorem 1. If A is i.i.d. N (0, 1) with m = O(k log(nk )) then Eq.(1) holds for c = O(1) with 90%

probability.

We can achieve c = 1 + ϵ for m a function of ϵ. Furthermore, x∗ = L1(y) is not necessarily k-sparse.

However, it is the case that if x is k-sparse, then x∗ = x. A priori, this last point is not immediately clear

in the setting of the ℓ1 relaxation. At a high level, this is a result of careful choice of A. We will see in

the following lectures that for A an RIP matrix, theorem 1 is true with probability 1. Then, it suffices
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to show that a random Gaussian matrix is RIP with high probability.

But why is it okay to relax L0(y) to L1(y)? L1(y) is the “closest” convex relaxation of L0(y). Con-

sider the following example, with n = 2,m = 1, k = 1
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Here, the black line corresponds to Ax∗ = y. The red points are the solution set of L0(y). The blue

points correspond to those vectors x for which ∥x∥1 = ϵ for increasing values of ϵ. We note that the

solution the L1(y) problem lies at the corner of ℓ1 ball in this case. The following diagram illustrates the

idea of “convex relaxation”.
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Here, the gray points represent those x with ∥x∥0 = 1 and ∥x∥∞ ≤ ϵ and the blue represent the x with

∥x∥1 ≤ ϵ. Notice that the blue set is the smallest convex body containing the gray.
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